
INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A03

DIFFERENCE DENSITY AND APERIODIC SUM-FREE SETS

Neil J. Calkin
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

calkin@clemson.edu

Steven R. Finch
Clay Mathematics Institute, One Bow Street, Cambridge, MA 02138, USA

steven.finch@inria.fr

Timothy B. Flowers
Department of Mathematical Sciences, Clemson University, Clemson, SC 29634, USA

tflower@clemson.edu

Received: 3/1/04, Accepted: 7/16/04, Published: 9/1/05

Abstract

Cameron has introduced a natural one-to-one correspondence between infinite binary se-
quences and sets of positive integers with the property that no two elements add up to a
third. He observed that, if a sum-free set is ultimately periodic, so is the corresponding
binary sequence, and asked if the converse also holds. We introduce the concept of difference
density and show how this can be used to test specific sets. These tests produce further
evidence of a positive nature that certain sets are, in fact, not ultimately periodic.

1. Introduction

A set S of positive integers is called sum-free if for all x, y ∈ S, x+y �∈ S. There is a natural
bijection between the set of sum-free sets and the set of infinite binary strings. Cameron

showed that an ultimately periodic sum-free set always yields an ultimately periodic binary

sequence. Subsequent work by Calkin and Finch suggest the converse is not true. We begin
by looking at binary strings with specific structure and prove that the corresponding sum-

free sets will always be periodic. Next, we define a difference density function on all sum-free
sets. The results of this function provide computational evidence that aperiodic sum-free
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sets could have a corresponding binary string which is periodic. Finally, we present several
theoretical and computational open questions related to these results.

2. Definitions

Call S ⊂ N sum-free if and only if ∀ x, y ∈ S, x + y �∈ S (where x, y need not be distinct).

Equivalently, S is sum-free if and only if S ∩ (S +S) = ∅. If ∃ p ∈ N such that for all n ∈ N,
n ∈ S if and only if n + p ∈ S, then S is called periodic (or purely periodic). The minimal

such p is referred to as the period of the sum-free set.

Recall that the symmetric difference between two sets S and T is defined by

S � T := (S ∪ T ) \ (S ∩ T ).

If there exists a purely periodic sum-free set T such that |S � T | < ∞, then S is called

ultimately periodic. If p is the period of T , then p is called the ultimate period of S. For an

ultimately periodic sum-free set S, let n′ = max(S � T ) and n0 =
⌈

n′
p

⌉
p. Then define the

following:

S∗ = S ∩ {1, 2, . . . , n0},
Sper := S \ S∗ = S ∩ {n0 + 1, n0 + 2, . . .},
S := Sper (mod p) := {q1, q2, . . . , qr} ⊆ {1, 2, . . . , p − 1}.

We refer to S∗ as the preperiod subset of S. Naturally, a sum-free set which is neither purely
periodic nor ultimately periodic (i.e. S∗ = S) is called aperiodic.

Let σ be a (one-way infinite) binary string,

σ = (σ1σ2σ3 . . .) ∈ 2N .

If there exists some p ∈ N such that σi = σi+p ∀ i ∈ N, then σ is called periodic (or purely

periodic). The number p is referred to as the period of the sequence. Similarly if there exist
p, i0 ∈ N such that σi = σi+p ∀ i ≥ i0, then σ is called ultimately periodic. p is referred to

as the ultimate period.

3. A Bijection

Cameron [3] observed a natural bijection between sum-free sets and binary sequences. We
can use a binary string σ as a decision sequence to determine which elements of N are to be

included in our corresponding sum-free set. Each number in N is tested in order for inclusion
in the set. If a number is a sum of numbers already in the set, it is automatically excluded.
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Otherwise, the number is included in the set if and only if the next unused σi is a 1. We use
this process to define the map θ : 2N −→ {S | S is sum-free}. Then θ(σ) is a sum-free set.

Now, for a sum-free set S, construct the sequence τ = (τ1τ2τ3 . . .) by

τi =




1 if i ∈ S

∗ if i ∈ S + S

0 otherwise.

Then, remove all of the ∗’s to get the decision sequence σ which corresponds to S. This
process is θ−1. (See [1] for a more formal definition of θ and θ−1).

For example,

θ(100100100100 . . .) = {1, 5, 9, 13, . . .}
θ(110011100111 . . .) = {1, 3, 8, 10, 12, 19, 21, 23, . . .}
θ(100110101011 . . .) = {1, 5, 7, 11, 15, 19, 21, . . .}

4. The Relationship Between the Periodicities of θ and σ(θ)

Since we now have this correspondence between sum-free sets and binary decision sequences,

we want to further explore how their periodicity properties relate. Cameron observed the
following:

Lemma 1. [3] If S = θ(σ) is ultimately periodic then its decision sequence σ is also ultimately

periodic.

It is natural to ask at this point if the converse of Lemma 1 is true. We pose it as a
problem.

Problem 2. [3] Is the following statement true: A sum-free set S = θ(σ) is ultimately
periodic if and only if its decision sequence σ is ultimately periodic?

Several sets have been proposed as possible counterexamples to this statement. However,

the ultimate structure of these sets is not known and it has not been shown with certainty
that they are aperiodic.

Problem 3. Suppose a sum-free set S appears to be a counterexample to Problem 2. How

would one prove that S is aperiodic?

First, we need a method for looking at a finite number of terms of a sum-free set and
using these terms to conclude the set is ultimately periodic.
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Lemma 4. [1, 2] Let the decision sequence of a sum-free set S be σ = θ−1(S) with σ
ultimately periodic. Suppose that for some number p we can compute a finite number of

terms of S such that S begins with an apparent preperiod subset and then three consecutive
cycles of period p (we will not require that this p be the minimal period of the set). Further,

suppose that
S∗ = {s ∈ S | s < p},

S1 = {s ∈ S | p < s < 2p},
S2 = {s ∈ S | 2p < s < 3p},
S3 = {s ∈ S | 3p < s < 4p}.

Finally, suppose that the first element of each of the three periodic cycles corresponds to a 1
in the same position of a periodic part of σ (again, not requiring this to be for the minimal

period of σ). Then S is ultimately periodic.

There are 51 distinct (nonzero) purely periodic decision sequences with period at most
five. Of these, all but three quickly show an ultimate periodicity which Lemma 4 ensures

will continue. For example,

θ(0̇011̇) = {n ≥ 1 | n ≡ 3, 4 (mod 7)}
θ(1̇1001̇) = {1, 3, 8, 10} ∪ {n ≥ 12 | n ≡ 1, 8, 10 (mod 11)} .

The remaining three purely periodic decision sequences with period five are (0̇1001̇), (0̇1010̇),

and (1̇0010̇). Despite calculating the corresponding sum-free sets for all numbers up to 50
million (over four million elements in each set) we still have been unable to determine any

ultimate period. (More details on how we searched for an ultimate period are given in section

6)

5. Structure of Certain Sum-Free Sets

One approach to try to understand Cameron’s problem is to study the structure of periodic

binary strings and how they relate specifically to the structure of the set. The hope is that
something can be found in these structures which would explain why a sum-free set, like

θ(0̇1001̇) for example, would appear to be aperiodic. The following propositions describe the
structure of some sets with a decision sequence containing only one or two 1’s.

Proposition 5. Let σ be a purely periodic decision sequence, σ = (σ̇1σ2 . . . σ̇p). Suppose that

exactly one of σ1, σ2, . . . σp (call it σj) is 1. Then θ(σ) is purely periodic with period p + 1
and θ(σ) = {n ∈ N | n ≡ j mod (p + 1)}.

Proof. Let S = θ(σ). Since σ1 = σ2 = . . . = σj−1 = 0, j is the first element of S and the sum

j + j will not be considered for inclusion in the set. Think of j as an element of the additive
group Z/(p + 1)Z and define j′ ≡ j + j mod (p + 1). Notice that j′ �= j (mod p + 1).



INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 5(2) (2005), #A03 5

The decision sequence now has p−1 consecutive 0’s to run through, causing it to exclude
the next p possible numbers from the set, because the decision sequence will not be consulted

on j′ (or, possibly, j′ + p+1 if j ≥ p+1
2

). Thus, the second element of S will be j + p+1, the
third will be j + 2(p + 1), etc. Thus θ(σ) = {n ∈ N | n ≡ j mod (p + 1)}, which is a purely

periodic sum-free set.

The proofs of next two propositions follow the same idea as the proof of Proposition 5.

Proposition 6. Let σ be a purely periodic decision sequence of period p with exactly two
1’s. Let i be the position of the first 1 and let j be the position of the second. Suppose that

j − i �= p/2 (otherwise, σ can be viewed as purely periodic with period p/2 and θ(σ) is purely
periodic by Proposition 5). Then θ(σ) is a purely periodic sum-free set if and only if one of

the following two conditions hold: (i) j < 2i and p ≥ 2j− i−2, or (ii) j ≥ 2i and p ≥ 2j− i.
In particular, in case (i), θ(σ) = { n ≥ 1 | n ≡ i, j (mod p + 3) }, and in case (ii),

θ(σ) = { n ≥ 1 | n ≡ i, j + 1 (mod p + 3) }.
Proposition 7. Let σ be a purely periodic decision sequence of period p ≥ 3, with 1’s in the
first and last positions and 0’s everywhere else. Then θ(σ) is an ultimately periodic sum-free

set and θ(σ) = {1} ∪ {n > 1 : n ≡ p + 1, p + 3 (mod p + 4)} .

This is by no means an exhaustive look at this approach. Unfortunately these propositions

cannot account for all binary strings with two 1’s which yield ultimately periodic sets.

6. Difference Density

We now introduce a different approach and look specifically at some sets which are thought

to be counterexamples for Problem 2. To better understand the behavior of these sets, we
consider the differences between elements of a set. We want to measure how frequently a

certain number occurs as a difference between two elements of a set and then compare this
to the number of elements to obtain a difference density. For a sum-free set S, define

dn(m) :=
#{x ∈ S | x − m ∈ S, x ≤ n}

#{x ∈ S | x ≤ n} .

If we look at dn(m) as n −→ ∞ and this limit exists, then define

d(m) := lim
n→∞

dn(m).

If the limit exists, then clearly 0 ≤ d(m) ≤ 1. When we apply these functions to purely

or ultimately periodic sum-free sets, they behave in a predictable way as described in the
following proposition.
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Figure 1: Sample plots of difference densities for periodic sum-free sets.

Proposition 8. If S is an ultimately periodic sum-free set with ultimate period p and S =

{q1, q2, . . . , qr}, then d(m) exists ∀ m ∈ N and is determined by the following:

(i) If p | m, then d(m) = 1.

(ii) If p |� m and m cannot be written as qi1 − qi2(mod p), then d(m) = 0.

(iii) If p |� m and m can be written as qi1 − qi2(mod p), then d(m) = γ
r
, where γ is the

number of ways to write m in this manner.

This proposition provides a method for searching for a period of a sum-free set: Compute
difference density values along with the set and, when a value of dn(m) approaches 1, that

m value is a candidate for the period. Then Lemma 4 can be applied to verify that the set
is periodic.

Another consequence of Proposition 8 is that we have a characterization of the appearance
of graphs of difference density values for all periodic sets. The graph will have points at 1

for every m which is a multiple of the period, with all other points at 0 or a rational number
between. This is demonstrated in the sample plots in Figure 1. Make special note of the

points at 1 in each plot. While difference density plots for periodic sum-free sets can be more
complicated than these examples, Proposition 8 requires that they all share this distinctive

feature.

For comparison, we consider difference density graphs for the sets θ(0̇1001̇), θ(0̇1010̇), and

θ(1̇0010̇). Recall that these three sets are potential counterexamples to Problem 2. Plots of

dn(m) for n = 5 × 107 and selected m values are included for θ(0̇1001̇) (Figure 2) and for
θ(0̇1010̇) and θ(1̇0010̇) (Figure 3). We computed dn(m) values for these sets for all m up to

1.25 × 107. The plots in all ranges for m look the same as the samples we have included.

We emphasize that these plots never have a point close to 1. In particular, notice that
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Figure 2: Plots of difference densities for θ(0̇1001̇).

the maximum dn(m) value is usually around 0.35 and always less than 0.5 . If any of these
three sets were ultimately periodic, there should be a point approaching 1 at every multiple

of the period. This provides strong evidence that the sets are aperiodic. However, since we
cannot show d(m) < 1 for all m, we cannot prove any of θ(0̇1001̇), θ(0̇1010̇), or θ(1̇0010̇) to

be aperiodic.

We can make another observation from these difference density graphs which suggests the

sets are aperiodic. As shown in Figure 2, the dn(m) values for θ(0̇1001̇) can be viewed as five
copies of an overlapping pattern, each with the same shape. These five pieces correspond

exactly with viewing the dn(m) values by the congruence classes of m mod 5. A similar
observation can be made for θ(0̇1010̇), with the exception that the m values should be split

into congruence classes mod 7. However, we have not found a comparable way to view the
difference densities of θ(1̇0010̇).

All of the evidence given above that the sets θ(0̇1001̇), θ(0̇1010̇), and θ(1̇0010̇) are ape-
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Figure 3: Plots of difference densities for θ(0̇1010̇) (top) and θ(1̇0010̇) (bottom).

riodic is based on finite calculations of infinite sets. Thus, let us consider for a moment
the possibility that one or more of the sets is ultimately periodic. This would imply that

we have not calculated enough terms of the set to be able to find the ultimate period. To
demonstrate why this does not seem to be the case, we need to look at an example of a

difference density plot of an ultimately periodic set which only considers elements of the set
occuring before the ultimate period takes effect.

Recall that an ultimately periodic sum-free set S can be written as S = S∗ ∪ Sper, where
S∗ is the preperiod subset. There are examples of ultimately periodic sets where S∗ is quite

large. For example, the sum-free set θ(0̇110011̇) has ultimate period p = 10710 and there are
around 89000 elements in S∗ [1]. We computed several million terms of S = θ(0̇110011̇) and

separated S into S∗ and Sper. We then did two calculations of dn(m) values, once using only
S∗ and then again using all of S. In Figure 4, selected plots of difference densities for this set

are shown. When m = p in the plot on the left, we observe dn(m) is about 0.75 . This value

is repeated on other intervals when m = 2p, 3p, etc. In the plot on the right using all of S,
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Figure 4: Plots of difference densities for θ(0̇110011̇) using only elements of S∗ (left) and all
n up to 10 million (right).

when m = p we observe dn(m) approaches 1 as expected. Thus, if one of θ(0̇1001̇), θ(0̇1010̇),

or θ(1̇0010̇) was ultimately periodic, we might expect to see some evidence of the period in
the dn(m) values. Since the largest dn(m) value we found always occurs before m = 400 and

is not repeated, we have further evidence which suggests the three sets are aperiodic.

7. Open Questions

The main open questions are Problems 2 and 3. We have given 3 specific candidates for

counterexamples in the preceding sections. We have also computed all the sum-free sets

corresponding to purely periodic binary strings of period at least six and no more than
11. Of these we have a total of 1012 sets for which we have not found an ultimate period.

However, we have not done extensive computations for these sets.

We submit the following additional open questions:

1. What insights can we gain from difference density graphs of sets with binary period 6-
11? How many of these difference densities will exhibit a pattern in congruence classes

as seen for θ(0̇1001̇) and θ(0̇1010̇)?

2. Can the elements of the sets θ(0̇1001̇) or θ(0̇1010̇) be written in some kind of closed

form? Do the patterns in the difference densities give any insight on how this might
be done?

3. What property of θ(1̇0010̇) keeps its difference density graph from having a pattern

modulo some number? Is this set the exception or is the congruence class pattern rare?
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4. Can Propositions 6 and 7 be extended to account for all binary strings with exactly
two 1’s which yield purely or ultimately periodic sets? Is there a way to use these to

predict which binary strings will yield potentially aperiodic sets before computing the
sets?

5. Suppose for some arbitrary decision sequence σ, the density of 1’s in σ exists. Does
d(m) exist for such a σ?
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