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Abstract

The geometric codes are the orthogonals of the codes defined by the designs
associated with finite geometries. The latter are generalized Reed-Muller codes,
but the geometric codes are, in general, not. We obtain values for the minimum
weight of these codes in the binary case, using geometric constructions in the
associated geometries, and the BCH bound from coding theory. Using Hamada’s
formula, we also show that the dimension of the orthogonal code of the projective
geometry design is a polynomial function in the dimension of the geometry.

1 Introduction

For any finite dimensional vector space V over a finite field Fq, the projective geometry
P(V ) and the affine geometry A(V ) provide combinatorial 2-designs by taking the
structures consisting of points and subspaces or flats of a fixed dimension. The codes
over Fp, the prime sub-field of Fq, are the well known Reed-Muller (for q = 2) or
generalized Reed-Muller codes; this was established in a series of papers by Delsarte
[5, 7, 8], Goethals [10] and MacWilliams [6] (see [2, Chapters 5 and 6],or [1], for more
references). The dimensions of these codes can be computed from various algorithms
or formulas, and the minimum weight and the nature of the minimum-weight vectors
in this special case when these codes are the codes of designs from geometries, is also
completely known: the minimum-weight vectors are the scalar multiples of the incidence
vectors of the blocks of the design, i.e. of the flats or subspaces.

The situation regarding the orthogonals of these codes is not as clear. These are
the so-called “geometric codes”(see [3, Chapter 2]) and they are not generalized Reed-
Muller codes, in general, unless q is a prime. Furthermore, the minimum weight of these
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codes is also not generally known, although some bounds are given: see, for example,
[2, Chapter 5] for a summary of what is currently known.

In this paper we use the geometry of the projective space and some lower bounds
obtained by Delsarte [5] using the BCH bound to determine the minimum weight when
the order of the field is even. In particular we obtain

Theorem 1 The minimum weight of the orthogonal of the binary code of the design
of points and r-subspaces of PGm(Fq) and that of the design of points and r-flats of
AGm(Fq), where q is even, 1 ≤ r < m, m ≥ 2, is (q + 2)qm−r−1.

We also obtain a simplification of Hamada’s well-known formula (see Section 4):

Theorem 2 Let q = pt and let D denote the design of points and r-dimensional sub-
spaces of the projective geometry PGm(Fq), where 0 < r < m. Then the p-rank of D
is given by

qm+1 − 1
q − 1

− h(m),

where, for any fixed value of r, h(m) is a polynomial in m of degree (q − 1)r.

The proof of Theorem 1 is in Section 3, and that of Theorem 2 is in Section 4. We
include also a short appendix showing the polynomials h(m) for some values of r and
q.

2 Background

Our notation and terminology for designs and codes will be standard and can be found
in [2], for example.

Notation will include PGm,r(Fq) to denote the design of points and r-dimensional
subspaces of the projective space PGm(Fq), i.e. a 2-(v, k, λ) design with

v =
qm+1 − 1

q − 1
, k =

qr+1 − 1
q − 1

, λ =
(qm−1 − 1) . . . (qm+1−r − 1)

(qr−1 − 1) . . . (q − 1)
.

Similarly, AGm,r(Fq) will denote the 2-design of points and r-flats (cosets of dimension
r) in the affine geometry AGm(Fq).

For any design D, a set of points is called an (n1, n2, . . . , ns)-set if blocks of the
design meet the set in ni points for some i such that 1 ≤ i ≤ s, and if for each i there
exists at least one block meeting the set in ni points. The ni’s are the intersection
numbers for the set, and an ni-secant is a block meeting the set in ni points. When
the design has even order, and thus in particular in the case of PGm,r(Fq) when q is
even, a set of points is called a set of even type, or an even set, if it is of type
(n1, n2, . . . , ns) where all the ni are even. Elementary counting shows that any set of
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even type will have even size. If the design is PGm,r(Fq) where q is even, then a set
that is an even set for r-subspaces (i.e. blocks) will be a set of even type for t-subspaces
for t ≥ r. A hyperoval in a plane of even order q is a set of q + 2 points such that
every line of the plane meets the set in 0 or 2 points.

The code CF of the design D over the finite field F is the space spanned by the
incidence vectors of the blocks over F . We take F to be a prime field Fp; in the case
of the designs from finite geometries that we consider here, p will be the same as the
characteristic of the field over which the geometry is defined. If the point set of D is
denoted by P and the block set by B, and if Q is any subset of P, then we will denote
the incidence vector of Q by vQ. Thus CF =

〈
vB |B ∈ B

〉
, and is a subspace of FP .

The orthogonal, or dual, code is the orthogonal under the standard inner product. If
a linear code over a field of order q is of length n, dimension k, and minimum weight
d, then we write [n, k, d]q to show this information. In the case where p = 2, so that
the code is binary, any set of points that is met evenly by the blocks of D will have
incidence vector in the binary code C⊥ orthogonal to the binary code C of the design.
Thus the search for sets of even type of smallest size will yield the minimum words of
C⊥, and the minimum weight. Even in the case of the finite geometry designs, this
minimum weight is not always known. However, notice that in the case q = 2 the
codes of the designs, and their orthogonal codes, are the Reed-Muller codes, and all
the questions we ask here have well-known answers. Other cases are also well known,
for example if m = 2 and q is even. The known bounds in the general case are summed
up in [2, Theorem 5.7.9] and are given as follows:

Result 1 1. Let C be the p-ary code of the design PGm,r(Fq) where q = pt and p
is prime. Then the minimum weight d⊥ of C⊥ satisfies

qm−r+1 − 1
q − 1

+ 1 ≤ d⊥ ≤ 2qm−r.

2. Let C be the p-ary code of the design AGm,r(Fq) where q = pt and p is prime.
Then the minimum weight d⊥ of C⊥ satisfies

(q + p)qm−r−1 ≤ d⊥ ≤ 2qm−r.

See also Blake and Mullin [3, Section 2.2], Delsarte, Goethals and MacWilliams [6] or
Delsarte [7, 5]. The bounds are deduced in [5] from the BCH bound using the fact
that the projective codes are cyclic and the affine codes are extended cyclic.

3 Minimal sets of even type

The following construction is basic to our determination of the minimum weight.
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Proposition 3 Let D = PGm,1(Fq) where q = 2t for t ≥ 1, i.e. D is the 2-( qm+1−1
q−1 , q+

1, 1) design of points and lines in P = PGm(Fq). Let H be a hyperplane in P, and let
S be a set of even type in H, i.e. S is a set of points such that every line of H meets
S evenly. Let V be a point of P that is not in H. Then the set of points

S∗ = {X|X on a line V Y for Y on S} − {V }

is a set of even type for D, of size q|S|.

Proof: We need to show that every line L of P meets S∗ evenly. If L is in H then this
is clear, since S is of even type. If L is not in H then L∩H = {X}, i.e. a single point.

If X ∈ S and L = V X then L meets S∗ in q points and we are done. If L 6= V X
then let Π be the plane containing L and V . Since V 6∈ H, Π is not in H and thus
meets it in a line ` containing X. The line ` meets S evenly in a set T , say, and for
each Q ∈ T , V Q is in Π and thus meets L. Thus L has precisely |T | points of S∗, and
no more, and thus L meets S∗ evenly.

If X 6∈ S and V is not on L then again look at the plane Π containing L and V ,
and let Π meet H in the line `. As in the last case, ` meets S evenly in a set T which is
possible empty, and the lines V Y for Y ∈ T will meet L in an even number of points.
If V is on L then clearly L does not meet S∗ at all. 2

Note: For any S, the set S∗ has ns = q amongst its intersection numbers.

Corollary 4 The designs PGm,1(Fq) and AGm,1(Fq) for q even, m ≥ 2, have even
sets of size (q + 2)qm−2 and of type (0, 2, q).

Proof: In the projective design PGm,1(Fq), starting with a hyperoval in the plane, the
set of size (q + 2)qm−2 can be built up in steps as described in Proposition 3. That
lines meet the set in (0, 2, q) points is clear from the construction.

To show that AGm,1(Fq) also has such sets, we need only show that there is some
hyperplane in PGm(Fq) that does not meet the even set of size qm−2(q+2) constructed
as in Proposition 3 in PGm(Fq). We show this inductively: it is clear for m = 2,
choosing simply a line external to the hyperoval. Suppose it is true for m − 1 and
let S∗ be an even set from the construction of Proposition 3, and S the set in the
hyperplane H. By the induction hypothesis, let H′ by a hyperplane of H that does not
meet S. Then the hyperplane of PGm(Fq) that is spanned by H′ and the point V of
the proposition will clearly not meet S∗. The intersection numbers are thus (0, 2, q). 2

Corollary 5 1. If C denotes the binary code of the design D = PGm,1(Fq), where
q is even, then for m ≥ 2, the minimum weight d⊥ of C⊥ satisfies

qm−1 + qm−2 + · · ·+ q + 2 ≤ d⊥ ≤ qm−2(q + 2).

Furthermore, if q ≥ 4 and m ≥ 3, then

qm−1 + qm−2 + · · ·+ q + 4 ≤ d⊥ ≤ qm−2(q + 2).
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2. If C denotes the binary code of the design D = AGm,1(Fq), where q is even, then
for m ≥ 2, the minimum weight d⊥ of C⊥ satisfies

d⊥ = qm−2(q + 2).

Proof: The upper bound follows from Corollary 4. For the lower bound, use Result 1
or argue simply as follows: let X be a point on a non-empty even set S; then every
line through X must meet S again, which gives the first lower bound.

If the bound is met, then every line through X meets S exactly twice, for any
X ∈ S, and this is only possible for m = 2 or for q = 2, by a result of Qvist, and
Barlotti, as quoted in Dembowski [9, Page 49], or see Hirschfeld [13]. This now gives
the second set of inequalities, and completes the proof for the projective case.

For the affine case, the lower bound given in Result 1 is the same as the upper
bound in Corollary 4. 2

Before turning to the proof of Theorem 1, we show that the even sets constructed
in Corollary 4 are unique when m = 3. In this case, when m = 3, the even set is a
hyperoval cone with its vertex deleted.

Proposition 6 For q ≥ 4 even, any even set in PG3,1(Fq) of type (0, 2, q) and of size
q(q + 2) is a hyperoval cone with its vertex deleted.

Proof: Let S be such a set. We first show that there is exactly one q-secant on each
point of S, so that the q-secants partition S. Thus letting vj denote the number of
j-secants on a point of S, we have

v2 + vq = q2 + q + 1
v2 + (q − 1)vq = q2 + 2q − 1,

so that vq = 1, as asserted.
A similar count shows that the only sets of points in the projective plane PG2(Fq)

with intersection numbers from the set (0, 2, q) and at most one q-secant on each point
are the hyperoval (of size (q + 2) and type (0, 2)) and the 2q-set, of type (0, 2, q),
consisting of the points on two lines from which the point of intersection has been
removed. Thus planes meet S in a hyperoval, a 2q-set of the type described, or not at
all.

Let L be a q-secant of S and let wj be the number of j-planes on L. Then

wq+2 + w2q = q + 1
(q + 2− q)wq+2 + (2q − q)w2q = q(q + 2)− q,

so that (q − 2)w2q = q2 − q − 2 = (q − 2)(q + 1), i.e. w2q = q + 1 and wq+2 = 0. Thus
all planes on the q-set L are 2q-planes, and, clearly, the lines other than L forming the
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2q-sets on these planes all meet L in the same point, i.e. the unique point of L not in
S.

Next take a 2-secant L′ of S and look at the planes on it. This yields

wq+2 + w2q = q + 1
qwq+2 + (2q − 2)w2q = q(q + 2)− 2,

so that w2q = 1 and wq+2 = q. Thus the unique 2q-plane on L′ contains two lines that
meet off S, and, by the above, they meet at the deleted vertex of a hyperoval cone. 2

We can now give the proof of Theorem 1, which uses Result 1 (2).

Proof of Theorem 1: Notice that if S is an even set for the design PGm,r(Fq), then
S will be an even set for the design PGm,s(Fq) for any s ≥ r. Furthermore, S will be
an even set for any PGm+t,r+t(Fq) containing the PGm(Fq), for t ≥ 1. If there is a
hyperplane H of PGm(Fq) that does not meet S, then S will be an even set for the
design AGm,r(Fq) obtained by deleting the hyperplane H from the projective space.

We have shown that the even set in PGm,1(Fq) of size (q + 2)qm−2 constructed
in Corollary 4 is not met by some hyperplanes, and thus it is an even set for some
AGm,1(Fq). To obtain an even set of size (q + 2)qm−r−1 in PGm,r(Fq), we take a
subspace W of dimension m − r + 1 in our projective geometry of dimension m, and
construct an even set for PGm−r+1,1(Fq) of size (q+2)qm−r−1, according to Corollary 4.
That this is an even set for PGm,r(Fq) follows by considering that any subspace U of
dimension r must meet W in at least a line, by the dimension equation. Since a
hyperplane can be constructed that does not meet this set, we also get an even set of
this size for AGm,r(Fq).

Thus sets of the required size exist; we need to show that they are minimal. Now
we can use the result of Delsarte [5, 6], quoted in Result 1, to deduce that this is the
minimum size in the affine case. Thus we need only prove the same for the projective
geometries. If an even set of smaller size existed for the projective case, it would have
to be met by every hyperplane, since it could not be an even set for the affine geometry.
We prove the result by induction on m. For m = 2 we have a projective plane and
the theorem is well-known; suppose we have the result for all dimensions up to m− 1
and all r such that 1 ≤ r ≤ m − 2. Let S be an even set for PGm,r(Fq), where
1 ≤ r ≤ m− 1. If r = m− 1 then |S| ≥ q + 2 by Result 1, or elementary counting. If
r < m − 1, suppose hyperplanes of PGm(Fq) meet S in {n1, n2, . . . , nk} points where
0 < n1 < n2 < . . . < nk (since we are supposing that every hyperplane meets S), and
suppose that xni hyperplanes meet S in ni points. Counting gives

xn1 + xn2 + · · · =
qm+1 − 1

q − 1
,

n1xn1 + n2xn2 + · · · = s
qm − 1
q − 1

,
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where |S| = s. Multiply the first by n1 and subtracting from the second yields

s
qm − 1
q − 1

≥ n1
qm+1 − 1

q − 1
.

Since the intersection of S with any hyperplane is met evenly by any r-subspace of the
hyperplane, by induction we have that n1 ≥ (q + 2)q(m−1)−r−1 = (q + 2)qm−2−r. Thus

s ≥ (q + 2)qm−2−r qm+1 − 1
qm − 1

≥ (q + 2)qm−1−r,

which completes the proof. 2

Note: 1. The theorem gives an algorithm to construct an even set of minimal size in
the design PGm,r(Fq) for q even: start with a hyperoval in a plane; this is an even set
for the design of hyperplanes. Now choose a point outside of the plane as described in
Corollary 4 and obtain an even set of size (q+2)q for the design of (m−2)-dimensional
spaces. Continue this process for m−r steps to obtain an even set of size (q+2)qm−r−1

for the design PGm,r(Fq).
2. The regular hyperovals in the projective planes, giving vectors of weight q + 2,
actually generate the orthogonal code in the case of m = 2: the Singer cycle acting on
a regular hyperoval will give a spanning set, as was proved by Pott [15]. In fact we
believe a similar argument will prove that a regular hyperoval under a Singer cycle on
PGm,m−1(Fq) will give a spanning set for the orthogonal binary code in this general
case.

Corollary 7 The even set of Corollary 4 of size (q +2)qm−2 in PGm,m−1(Fq), q even,
m ≥ 2, is a set of type (0, 2) for m = 2, and of type (0, (q + 2)qm−3, 2qm−2) for m ≥ 3.

Proof: We prove this by induction on m. For m = 2 it is clear, but we need to start the
induction at m = 3. Let H be the distinguished hyperplane in PG3(Fq) that contains
the hyperoval S of our set S∗, and let V be the vertex point of the construction. Let H
be any hyperplane (plane). If H = H then the result is clear. If H 6= H, let L = H∩H.
Then L meet S in 0 or 2 points. If V ∈ H then H meets S∗ in 2q or 0 points; if V 6∈ H,
then H meets S∗ in q + 2 points, since H meets every line through V exactly once.
This proves the result for m = 3.

Suppose now that it is true for m − 1. With the same notation as above, H is a
hyperplane in PGm(Fq). If H = H then H meets S∗ in S, i.e. in (q + 2)qm−3 points.
Otherwise H meets S in t points, where t ∈ {0, (q + 2)qm−4, 2qm−3}, by the induction
hypothesis. If V ∈ H then H meets S∗ in qt points; if V 6∈ H then H meets each line
through V exactly once, in distinct points, and thus it meets S∗ in (q + 2)qm−3 points.
This gives the result. 2
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Note: 1. For q ≥ 4 a power of 2, by forming a matrix whose columns are the (q+2)qm−2

vectors of length m + 1 corresponding to the points of the even set, and using this as
the generator matrix of a q-ary code, Corollary 7 provides us with a construction of
linear q-ary codes of length (q + 2)qm−2, dimension m + 1, minimum distance qm−1,
and just three non-zero weights, i.e. {qm−1, (q − 1)(q + 2)qm−3, (q + 2)qm−2}. Thus we
have, for m ≥ 3,

[(q + 2)qm−2,m + 1, qm−1]q

three-weight codes. We can give the weight enumerator for such a code, since we
can solve the three equations we get from counting: denoting by xni the number of
hyperplanes that meet the even set S in ni points, for i = 0, 1, 2, where n0 = 0,
n1 = (q + 2)qm−3 and n2 = 2qm−2, the standard equations

xn0 + xn1 + xn2 =
qm+1 − 1

q − 1
,

n1xn1 + n2xn2 = s
qm − 1
q − 1

,

n1(n1 − 1)xn1 + n2(n2 − 1)xn2 = s(s− 1)
qm−1 − 1

q − 1

yield

xn0 =
1
2
q(q − 1), xn1 = q3 qm−2 − 1

q − 1
xn2 =

1
2
(q + 1)(q + 2).

Thus the weight distribution is given by the table:

Weight 0 qm−1 (q − 1)(q + 2)qm−3 (q + 2)qm−2

Number of words 1 1
2(q2 − 1)(q + 2) q3(qm−2 − 1) 1

2q(q − 1)2

2. Corollary 7 can be generalised: using the notation of Proposition 3, suppose that S
has type (n1, n2, . . . , nt) with respect to hyperplanes of H. Then S∗ has intersection
numbers {s, qn1, qn2, . . . , qnt} with respect to hyperplanes, where |S| = s. In particu-
lar, starting with an even set of size s in the plane PG2(Fq), and intersection numbers
(n1, . . . , nt) with respect to lines, using the construction of Proposition 3 recursively,
we obtain S∗ with intersection numbers for hyperplanes {qm−3s, qm−2n1, . . . , q

m−2nt}.
Thus we have an (m + 1)-dimensional code with t + 1 non-zero weights, length qm−2s
and minimum weight qm−2(s− nt). Notice, of course, that here s ≥ q + 2 and nt ≤ q,
so that s− nt ≥ 2.
3. The proof of Theorem 1 used the BCH bounds for the codes as obtained by Delsarte
[5]. In the case q = 4 and r = 1 a self-contained combinatorial argument will suffice,
since the upper and lower bounds are close enough to obtain the minimum weight. By
observing the value of the dimension of the dual code of C2(PGm,1(F4)) for values of
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m for 2 ≤ m ≤ 10, we obtain the following formula for the dimension (which we will
prove below):

dim(C2(PGm,1(F4))⊥ =
1
3
(m + 1)(m2 + 2m + 3),

so that the codes for q = 4 are[
4m+1 − 1

3
,
1
3
(m + 1)(m2 + 2m + 3), 4m−26

]
2

linear binary codes.
4. We can prove that the minimal sets of size 96 for PG4,1(F4) described in Proposi-
tion 3 are the only ones of this size met evenly by lines: see [14].

4 Dimension formulas

The dimension of any of these codes from finite geometries can be computed from
the general formula of Hamada [11, 12] (see [2, Theorem 5.8.1]), or by counting the
cardinality of a set of integers that satisfy certain conditions on their q-weight, as given
in [2, Theorem 5.7.9]. See also Brouwer and Wilbrink [4, Theorem 4.8]. We will use
Hamada’s formula:

Result 2 (Hamada [11, 12]) Let q = pt and let D denote the design of points and
r-dimensional subspaces of the projective geometry PGm(Fq), where 0 < r < m. Then
the p-rank of D is given by

∑
s0

. . .
∑
st−1

t−1∏
j=0

L(sj+1,sj)∑
i=0

(−1)i

(
m + 1

i

)(
m + sj+1p− sj − ip

m

)
,

where st = s0 and summations are taken over all integers sj (for j = 0, 1, . . . , t − 1)
such that

r + 1 ≤ sj ≤ m + 1, and 0 ≤ sj+1p− sj ≤ (m + 1)(p− 1),

and
L(sj+1, sj) = bsj+1p− sj

p
c,

i.e. the greatest integer not exceeding (sj+1p− sj)/p, i.e. the floor function.

For particular parameter sets there are more concise formulas for the p-rank: see
[2, Chapter 5] or [1] for a summary of these. It turns out that Hamada’s formula can
be simplified in the general case, and used to construct a polynomial function in m for
the dimension of the orthogonal codes.

Since the case q = 4 and r = 1 is particularly simple, we will first give a proof of
this before turning to the general formula, for which the results are more technical.
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4.1 Formulas for q = 4

Throughout this section we will work under the convention that a sum
∑

s is the sum
over all integer values of s for which the summands are non-zero: we will only place
conditions on the limits of the summands if there are some non-zero terms which we
wish to discard. Notation will be as in Hamada’s theorem, Result 2.

Theorem 8 The dimension of the orthogonal of the binary code of the design
PGm,1(F4) for m ≥ 2 is 1

3(m + 1)(m2 + 2m + 3).

Proof: The sum under consideration is

∑
s0

∑
s1

1∏
j=0

∑
i

(−1)i

(
m + 1

i

)(
m + 2sj+1 − sj − 2i

m

)

together with restrictions which are equivalent to

• 2 ≤ sj ≤ m + 1;

• the entries in the binomial coefficients are all non-negative;

• 2sj+1 − sj − 2i is non-negative.

Then we can rewrite the sum as

∑
s0

∑
s1

1∏
j=0

∑
i

(−1)i

(
m + 1

i

)(
m + 2sj+1 − sj − 2i

2sj+1 − sj − 2i

)

=
∑
s0

∑
s1

1∏
j=0

∑
i

(−1)i

(
m + 1

i

)
(−1)2sj+1−sj−2i

(
−(m + 1)

2sj+1 − sj − 2i

)

=
∑
s0≥2

∑
s1≥2

1∏
j=0

(
m + 1

2sj+1 − sj

)

by an application of Vandermonde’s identity (with negative upper binomial coefficient).
Here all the other restrictions are implied by the standard conventions about binomial
coefficients.

Now, this sum is ∑
s0

∑
s1

(
m + 1

2s1 − s0

)(
m + 1

2s0 − s1

)

−
(

m + 1
0

)(
m + 1

0

)
−
(

m + 1
1

)(
m + 1

1

)
−
(

m + 1
3

)(
m + 1

0

)
−
(

m + 1
0

)(
m + 1

3

)
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(i.e. we consider the full sum with no restrictions on the sj ’s and just subtract off the
terms which have a non-zero contribution: those for which 0 ≤ sj ≤ 2 and sj+1 ≤ 2sj ,
and so on.)

We can evaluate the full sum by setting u = 2s1 − s0 so that s0 = 2s1 − u and the
sum becomes∑

s0

∑
s1

(
m + 1

2s1 − s0

)(
m + 1

2s0 − s1

)
=
∑
u

∑
s1

(
m + 1

u

)(
m + 1

3s1 − 2u

)
.

Observe now that the inner sum (which is by convention over all integer values of
s1) is a trisected sum: ∑

u

(
m + 1

u

)∑
s1

(
m + 1

3s1 − 2u

)
.

The standard method for handling trisections is to use the cube root of unity in any
extension field, which we shall denote by ω. Recall that if we take a generating function
f(x) =

∑
akx

k then ∑
k

a2kx
2k =

1
2
(f(x) + f(−x)).

Similarly, ∑
k

a3kx
3k =

1
3
(f(x) + f(ωx) + f(ω2x)),

∑
k

a3k+1x
3k+1 =

1
3
(f(x) + ω−1f(ωx) + ω−2f(ω2x)),

∑
k

a3k+2x
3k+2 =

1
3
(f(x) + ω−2f(ωx) + ω−4f(ω2x)),

i.e. ∑
k

a3k+ux3k+u =
1
3
(f(x) + ω−uf(ωx) + ω−2uf(ω2x)).

Thus with f(x) = (1 + x)m+1,

∑
s1

(
m + 1

3s1 − 2u

)
=

1
3
(2m+1 + ω−u(1 + ω)m+1 + ω−2u(1 + ω2)m+1)

=
1
3
(2m+1 + ω−u(−ω2)m+1 + ω−2u(−ω)m+1)

=
1
3
(2m+1 + (−1)m+1(ωm+u+1 + ω2(m+u+1))).

Therefore the full sum is∑
s0

∑
s1

(
m + 1

2s1 − s0

)(
m + 1

2s0 − s1

)
=
∑
u

(
m + 1

u

)
1
3
(2m+1+(−1)m+1(ωm+u+1+ω2(m+u+1)))
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=
4m+1

3
+ (−1)m+1 1

3
((1 + ω)m+1ωm+1 + (1 + ω2)m+1ω2(m+1))

=
4m+1

3
+ (−1)m+1 1

3
((−ω3)m+1 + (−ω3)m+1)

=
4m+1 + 2

3
.

Hence the dimension in this case is

4m+1 + 2
3

− 1− (m + 1)2 − 2

(
m + 1

3

)
=

4m+1 − 1
3

− 1
3
(m + 1)(m2 + 2m + 3).

2

Corollary 9 The dimension of the orthogonal of the binary code of the design
AGm,1(F4) for m ≥ 2 is m2 + m + 1.

Proof: Use the fact that, for any m, r, and q = pt, p prime,

dim(Cp(AGm,r(Fq))) = dim(Cp(PGm,r(Fq)))− dim(Cp(PGm−1,r(Fq)))

(see [2, Lemma 5.7.1] for a proof of this statement), and the formula we have just
obtained. 2

We observe now that the same techniques work for any value of the parameter r,
where r is the dimension of the subspaces under consideration: the only change is that
we have to subtract off all the terms

( m+1
2s1−s0

)( m+1
2s0−s1

)
for which at least one of the s′js

is at most r. For example, the term subtracted for r = 2 is(
m + 1

0

)2

+

(
m + 1

1

)2

+ 2

(
m + 1

3

)(
m + 1

0

)
+

(
m + 1

2

)2

+ 2

(
m + 1

4

)(
m + 1

1

)
+ 2

(
m + 1

6

)(
m + 1

0

)
,

corresponding to (s0, s1) being in the set of pairs

{(0, 0), (1, 1), (1, 2), (2, 1), (2, 2), (2, 3), (3, 2), (2, 4), (4, 2)}.

This gives the formula for the dimension of the binary code of the design PGm,2(F4):

4m+1 − 1
3

− 1
360

(m + 1)(m + 2)(m4 + 18m3 + 29m2 + 72m + 180).
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4.2 The general Hamada formula

We now consider the situation for general values of the main parameters m, r, p, t.
Clearly these come into play at different points of the analysis: the parameter p being
2 was essential in the evaluation of the sum over i at the begining, and the parameter
t being 2 enabled us to rewrite the sum

∑
s0

∑
s1

( m+1
2s1−s0

)( m+1
2s0−s1

)
. If t ≥ 2, then we will

have a larger product to evaluate. Furthermore, we will have more terms to subtract
off from the full sum to compute the sum restricted to sj ≥ r + 1.

Proof of Theorem 2: Write

Nr =
∑

s ≥ r

t∏
j=1

∑
i

(−1)i

(
m + 1

i

)(
−(m + 1)

psj+1 − sj − pi

)
,

where s denotes the t-tuple (s1, s2, . . . , st) in Hamada’s formula. If we define

f(x) =
(1− xp)m+1

(1− x)m+1
,

then we obtain ∑
i

(−1)i

(
m + 1

i

)(
−(m + 1)

u− pi

)
= [xu] f(x),

where the right-hand side denotes the coefficient of xu in f(x). Note that f(x), although
presented as a rational function, is a polynomial in x of degree (p − 1)(m + 1), and
f(1) = pm+1. Thus

Nr =
∑
s≥r

t∏
j=1

[
x

psj+1−sj

j

]
f(xj).

We now change variables to allow us to compute N0. Define uj = psj+1 − sj for
j = 1, . . . , t− 1, so that

ps1 − st = p2s2 − pu1 − st

...
= ptst − pt−1ut−1 − pt−2ut−2 − . . .− p2u2 − pu1 − st

= (pt − 1)st − pt−1ut−1 − pt−2ut−2 − . . .− p2u2 − pu1.

Thus

N0 =
∑

u ≥ 0

∑
st≥0

t−1∏
j=1

[
x

uj

j

]
f(xj)

[x(pt−1)st−pt−1ut−1−...−pu1
t

]
f(xt)

=
∑

u ≥ 0

t−1∏
j=1

[
x

uj

j

]
f(xj)

 ∑
st≥0

[
x

(pt−1)st−pt−1ut−1−...−pu1
t

]
f(xt).
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Now let g(x) =
∑∞

i=0 aix
i. Then, with b = q − 1 and ω a primitive (q − 1)th root of

unity, for any integer a

∑
i≡a(mod b)

aix
i =

1
b

b−1∑
l=0

ω−lag(ωlx),

so that

∑
st≥0

[
x

(pt−1)st−pt−1ut−1−...−pu1
t

]
f(xt) =

1
pt − 1

pt−2∑
l=0

ωl(pu1+p2u2+...+pt−1ut−1)f(ωl)

and thus

N0 =
1

pt − 1

pt−2∑
l=0

∑
u≥ 0

t−1∏
j=1

[
x

uj

j

]
ωlpjujf(xj)

 f(ωl)

=
1

pt − 1

pt−2∑
l=0

f(ωl)
t−1∏
j=1

∑
u≥ 0

[
x

uj

j

]
ωlpjujf(xj)

=
1

pt − 1

pt−2∑
l=0

f(ωl)
t−1∏
j=1

f(ωlpj
)

=
1

pt − 1

pt−2∑
l=0

t∏
j=1

f(ωlpj
),

since ωpt
= ω.

If l = 0 then f(ωlpj
) = f(1) = pm+1. Further, if 1 ≤ l ≤ pt−2, then

∏t
j=1 f(ωlpj

) =
1, as is easily seen by writing out terms: the numerators and denominators cancel
cyclically. Hence

N0 =
pt(m+1) + pt − 2

pt − 1
=

pt(m+1) − 1
pt − 1

+ 1.

Finally, to determine Nr+1, which is the dimension of the code arising from the
r-dimensional subspaces, we need to subtract off all terms in the original sum which
have some sj ≤ r. There are only finitely many of these (a priori upper bounds are
easy to obtain on their number). For any fixed p, r, t, these terms are easily computed:
they contribute a polynomial amount to the sum, and thus

Nr+1 = N0 − g(m) =
pt(m+1) − 1

pt − 1
+ 1− g(m) (1)

where g(m) = h(m) + 1 is a polynomial of degree (q− 1)r. The proof of Theorem 2, as
stated in the introduction, is now complete. 2
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Note: To compute the polynomial g(m) in any particular case we need to evaluate

∑
s

t∏
j=1

∑
i

(−1)i

(
m + 1

i

)(
m + psj+1 − sj − pi

m

)

over s where at least one of the si’s satisfies si ≤ r. Notice that si = 0 only occurs if
all the sj ’s are 0, and the term contributed is the term “1” in Equation (1).

5 Minimum weight in the non-binary case

Values for the minimum weight of the orthogonal codes of the p-ary codes of the geom-
etry for p > 2 are known, in general, only for q = p. In this case the minimum weight
for the designs of points and r-dimensional subspaces or flats in an m-dimensional pro-
jective or affine geometry is 2pm−r, since the codes here are generalized Reed-Muller
codes and the lower and upper bounds in the affine case of Result 1 actually coincide.
The minimum vectors are not constant in this case, and unlikely to be in the general
case. Words of weight 2qm−r are easily constructed, and this does provide an upper
bound for the minimum weight: see [2, Chapter 5].

In some cases, however, we can construct words of smaller weight in the orthogonal
code: consider a projective (or affine) plane Π of square order q2, where Π need not be
desarguesian but we suppose it contains a Baer subplane, π. If Q is the set of points
of π, and L is a line of Π that is a line of π, i.e. meets Q in q + 1 points, then, writing
vX for the incidence vector of a set X of points (see Section 2), we find that the vector
vQ − vL is in the orthogonal code of the design, and is of weight 2q2 − q. This set can
clearly be found in an affine plane as well by taking for the line at infinity a tangent
to the Baer subplane that meets L in π.

In fact, a construction as in Proposition 3, but placing signs on added points, will
yield a word in the orthogonal code for PGm,1(Fq) from a word in the orthogonal for
PGm−1,1(Fq): we use the sign + for points on lines through V that meet the set for the
hyperplane in a point with a positive sign, and − for points on lines through V that
meet in points with a negative sign. This will provide a vector in the orthogonal code
for PGm,1(Fq) of weight qs, where s is the weight of the word in the orthogonal code
for the hyperplane. For example, using the above construction with a Baer subplane,
we get a word of weight (2q2 − q)(q2)m−2 in the orthogonal to the p-ary code for
PGm,1(Fq2).

6 Appendix

We include here some computations of the polynomials h(m) from Theorem 2. These,
and further polynomials, can be found at the web site
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http://www.math.clemson.edu/faculty/Key/poly.ps or Key/poly1 for a text file with
further polynomials.

In each case the polynomial given is the value of the p-rank of the orthogonal (dual)
code of the design of point and r-dimensional subspaces over Fq, where q is a power of
the prime p, in the projective space of dimension m. The degree is (q − 1)r and the
coefficient of m(q−1)r is 2

((q−1)r)! .

q = 4, r = 2

2
6! (m + 2)(m + 1)(m4 + 18m3 + 29m2 + 72m + 180)

q = 4, r = 3

2
9! (m+1)(m8 +44m7 +826m6 +1064m5 +9289m4 +25676m3 +85644m2 +149616m+181440)

q = 4, r = 4

2
12! (m + 2)(m + 1)(m10 + 75m9 + 2490m8 + 37590m7 − 164247m6 + 1245795m5 + 167660m4 +
8592060m3 + 26605296m2 + 43346880m + 119750400)

q = 4, r = 5

2
15! (m+1)(m14+119m13+6461m12+181909m11+2735733m10−27390363m9+226658003m8−
287580293m7 + 2393897506m6 + 5448887444m5 + 35100765336m4 + 92455219584m3 +
296459386560m2 + 548983008000m + 653837184000)

q = 4, r = 6

2
18! (m + 2)(m + 1)(m16 + 168m15 + 13060m14 + 554736m13 + 13436374m12 + 165307968m11 −
5539922740m10+73291099728m9−438573851551m8+2073529633560m7−4530978319000m6+
15864574614336m5 + 12967596594576m4 + 90381188306304m3 + 383263652954880m2 +
567413363865600m + 1600593426432000)

q = 4, r = 7

2
21! (m + 1)(m20 + 230m19 + 24795m18 + 1529310m17 + 57436506m16 + 1267975260m15 +
14063772070m14 − 985235601460m13 + 18063909964581m12 − 157011781481490m11 +
925909983165375m10−3095429863328010m9 +9832975608844816m8−5173838215516720m7 +
85392850884861360m6 + 199017299982872160m5 + 1383418617290868096m4 +
3716165306079198720m3 + 11374243844734310400m2 + 21557619010013184000m +
25545471085854720000)
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q = 4, r = 8

2
24! (m+2)(m+1)(m22 +297m21 +41657m20 +3426555m19 +177442716m18 +5730690042m17 +
105277470562m16 + 690891106950m15 − 198150319603159m14 + 5776269732740397m13 −
83669958539637483m12 + 791552042610904575m11 − 5142101134793948534m10 +
25179174440936347392m9 − 88227989351191922848m8 + 265253484517196015280m7 −
435354887506633753824m6 + 1269541561584515167872m5 + 2026038087816252314112m4 +
7509137834460241520640m3 + 38265634599417140428800m2 + 54575293730290679808000m +
155112100433309859840000)

q = 8, r = 1

2
7! (m + 1)(m6 + 27m5 + 295m4 + 825m3 + 1744m2 + 2148m + 1680)

q = 8, r = 2

2
14! (m + 2)(m + 1)(m12 + 102m11 + 4697m10 + 129030m9 + 2353263m8 + 29994426m7 +
213181331m6 + 528949410m5 + 1498825636m4 + 4977145272m3 + 8664003072m2 +
13144844160m + 14529715200)

q = 8, r = 3

2
21! (m + 1)(m20 + 230m19 + 24795m18 + 1664970m17 + 78056826m16 + 2714110860m15 +
72575557990m14 + 1519524165140m13 + 24975789135141m12 + 296234479265790m11 +
2094571157806335m10 + 3092495888499810m9 + 37937916310602736m8 +
124817683908495920m7 + 552488014222165680m6 + 1609891392776482080m5 +
4701785318691175296m4 + 10318877740334707200m3 + 19034689212941875200m2 +
23220102048933888000m + 17030314057236480000)

q = 8, r = 4

2
28! (m + 2)(m + 1)(m26 + 403m25 + 77350m24 + 9410050m23 + 814656895m22 +
53417849485m21 + 2756902291000m20 + 114771333047800m19 + 3910733252961535m18 +
109821287136823405m17 + 2544108153603922750m16 + 48439412175480467050m15 +
725395182933252345265m14 +7424483412511957542595m13 +27976894224365706938500m12−
285738046995173204989700m11 + 4445548431210952741527280m10 −
6305712569088753866405360m9 + 49990467227260205635704000m8 +
138099879084307731770836800m7 + 416381021704786898067969024m6 +
2360348597925294762783209472m5 + 5382361320799704175230566400m4 +
16107900065185474015561728000m3 + 32257836013463841387479040000m2 +
44918640562828634222100480000m + 50814724101952310083584000000)

q = 9, r = 1

2
8! (m + 2)(m + 1)(m6 + 33m5 + 445m4 + 3135m3 + 7114m2 + 9432m + 10080)
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q = 9, r = 2

2
16! (m + 1)(m15 + 135m14 + 8365m13 + 315315m12 + 8078707m11 + 148873725m10 +
2036157695m9 + 21021002145m8 + 143137602608m7 + 538812794520m6 + 1275930459440m5 +
3608050577040m4 + 7656330893184m3 + 13485570405120m2 + 15114532608000m +
10461394944000)

q = 9, r = 3

2
16! (m + 3)(m + 2)(m + 1)(m21 + 294m20 + 40775m19 + 3547110m18 + 217077546m17 +
9935114364m16 + 352888691950m15 + 9963304105020m14 + 226720656078581m13 +
4175171164790094m12 + 61915308721874475m11 + 730273881191085630m10 +
6125341298104500496m9 + 25536649010991259344m8 + 26885942701524930800m7 +
424257484869193513440m6 + 1741099397685570389376m5 + 3157857514019742395904m4 +
12683891387466885888000m3 +25475132724320072908800m2 +34014467173874761728000m+
51704033477769953280000)

q = 16, r = 1

2
15! (m+1)(m14+119m13+6461m12+211939m11+4687683m10+73870797m9+854224943m8+
7093943857m7 + 40012868896m6 + 123817477784m5 + 293768734896m4 + 511468133904m3 +
689704398720m2 + 621631584000m + 326918592000)

q = 25, r = 1

2
24! (m + 4)(m + 3)(m + 2)(m + 1)(m20 + 290m19 + 39615m18 + 3388650m17 + 203522946m16 +
9121022580m15 + 316404601630m14 + 8697685698500m13 + 192374726145381m12 +
3456380926339770m11 + 50707508702323395m10 + 608324168861056050m9 +
5955504667302749896m8 + 47306207576243088560m7 + 301807600055278941360m6 +
1522207900529046496800m5 + 5386524779294396971776m4 + 11761978590406197388800m3 +
15849008498187131904000m2 + 16828581707597721600000m + 12926008369442488320000)
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