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Abstract

We show that for every k > 3 the number of subsets of {1,2,...,n}
containing no solution to x1 + x2 + ... + xx = y, where the x; need not
be distinct, is at most ¢2°™, where a = (k — 1) /k.



A set S of positive integers is sum-free if S contains no z, y and z (not
necessarily distinct) such that  +y = 2. Cameron and Erdos have shown
(3] that the number of sum-free sets contained in {n,in +1,...,n} is 2%,
and Alon [1], Calkin [2] and Erdés and Granville (personal communication) have
independently shown that the number of sum-free sets contained in {1,2,...,n}
is 0(2(219) for every e > 0. Erdés has asked (personal communication) if the
number of sets contained in {1,2,...,n} without a solution to x +y + z =t is
2% . In this paper, we answer this question in the affirmative and show more
generally that the number of sets contained in {1,2,...,n} with no solution to
X1+ x2 + ...+ xx = y (with the z; not necessarily distinct) is at most ¢2*",
where oo = (k —1)/k and k > 3 . (Note that k = 2 corresponds to the sum-free
case mentioned above. It is interesting that we get a stronger result for & > 3
than for £ = 2, and we shall later show where the method used here fails for
k = 2.) We know this number must be at least ¢2*", since if a set S has all
its elements in [n — an, n|, then the sum of any k elements of S will be greater
than n. Hence all 2¢™ subsets of [n — an + 1, n] will be included in this number.

In what follows, we will define

(*)-free to mean having no solution to Zle T =y
Fn = the set of (x)-free sets in {1,2,...,n}
In= |]'—n|

gn = the number of (x)-free sets in {1,2,...,n} which contain less than

€q elements greater than n — ¢
h,, = the number of (x)-free sets in {1,2,...,n} which contain at least

€q elements greater than n — ¢
by, = the number of (x)-free sets in {1,2,...,n} which contain at least

€q elements greater than n — ¢ and which have least element [

Theorem 1 Fiz k > 3, and let o« = (k — 1)/k. There exists a constant ¢ such
that the number of subsets of {1,2,...,n} containing no solution to

k
in =Y
i=1

is at most c2°™.



Proof The proof will be along the following lines: we shall split F,, into several
parts, where each part will be determined by the number of elements each set
has in [n — ¢+ 1,n] and by the size of its least element {. The reason we consider
the size of the least element in a set is that any set which contains many small
elements (in relation to n) cannot contain many medium or large elements, and
a set with many medium elements cannot contain many large elements. Hence,
the (x)-free sets of greatest cardinality will be those with a large least element
. Each subset of a (x)-free set is clearly (x)-free, so most of F,, will be those
sets with many elements in [n — ¢+ 1,n] and a large least element .

But first we must choose € and ¢ in an appropriate way. We will pick d such
that d > ﬁ and then choose € and ¢ such that

q 1
< 2%
(661) ‘43

and such that any set of eq elements in {1,2,...,q} contains an arithmetic
progression of length at least 2d + 1. We are guaranteed the ability to do this

by [4].
We shall first consider the sets which have density less than € in the largest ¢

elements of {1,2,...,n}; that is, they have less than eq elements in [n—g¢+1,n].
The number of ways to get less than eq elements in [n — ¢ 4+ 1,n] is less than

(a)

and this is less than %2‘1‘1, by our choice of € and q. We multiply this by the

number of (x)-free sets in {1,2,...,n — ¢} and we see that the number g, of
(x)-free sets in {1,2,...,n} having fewer than eq elements in [n — ¢+ 1,n] is at
most

q 1o
(€q> €an—q < 52 qfn—q~

We shall now prove that the number of sets in F,, having at least eq elements
in [n —g+1,n] is at most ¢2*™, where ¢ is independent of n, and the result will
then follow by induction. First we shall state two lemmas due to Calkin [2].

Lemma 1 The number of binary sequences of length b without any pairs of 1s
at distance exactly 1,3,5,7, ..., 2d — 1, is at most 9% (b+2d)

Proof The number of sequences of length 2d without pairs of 1s at an odd
distance is exactly 29! — 1. Thus the number of sequences of length b without
pairs of 1s at an odd distance less than 2d is at most

(2d+1 o 1)[%} < (2d+1)%+1 _ 2%(b+2d)

as required.



Lemma 2 Given an arithmetic progression b—da,b— (d—1)a, ..., b+da, the
number of subsets of {1,2,...,b— 1} having no pairs x,y such that x +y is an
element of the progression, is at most

o G (b+a(2d+1))
Proof Write the elements of {1,2,...,b — 1} in the following a sequences:
A ={l,b—1,1+a,b—1—a,1+2a,b—1-2a,...},

Ay ={2,b—2,2+a,b—2—a,2+2a,b—2—2a,...},

A, ={a,b—a,2a,b—2a,3a,b—3a,...},

where each sequence has either [3} or ng elements, and every element of
{1,2,...,b} occurs in exactly one such sequence. Then, for any set S which
has no pair of elements summing to a member of the arithmetic progression,
the characteristic sequence of S is such that when written as a binary sequences
in the order given by A;,..., A,, each of these binary sequences has the prop-
erty that there are no 1s at distance exactly 1, 3,5, 7, ..., 2d — 1. The number
of ways of choosing such a set S is thus at most the number of ways of choosing
a sequences of length % + 1, without 1s at an odd distance less than 2d. This is
at most

oGt (E+142d)a _ o%h (b+a(2d+1))

as desired.
Now we shall place an upper bound on h,,.

Lemma 3 The number hy, of (x)-free sets in {1,2,...,n} which contain at least
eq elements greater than n — q is less than 2971207 4 297,

Proof If a set has 1> 7, then the set is clearly (*)-free. Then any element of
[l,n] can be in the set, hence the number of sets with [ > % is

2"k =207,

Now we shall consider the more interesting case where a set has [ < lk‘ We
have an arithmetic progression ¢ — da,t — (d — 1)a,...,t,t +a,...,t + da, and
least element [ in our set S. Let KC; be the family of sets with least element
I. Then |K;| is less than the number of subsets of [1,n] with no solution to
x1 + x2 + (k — 2)l = y. Now write 21 as z; + 1 and x2 as 2o + [. Next we count
the number of subsets of [0,n — ] with no solution to



z1 +20 =t —da—kl
z214+2z2=t—(d—1)a—kKl

21 +2z2=t+da— kl
An upper bound for this is
2%(tfkl+1+a(2d+1)Q(nfl)f(tfkl)ﬂ
(where the first term is obtained as in Lemma 2 and the second term allows all
combinations of elements of [(n — 1) — (¢t — kl),n — [] to be chosen)
_ 2%1(t—kz+1+a(2d+1))2(n—t>+12(k—1)z
_ 2%(n—kl—(n—t—ad)+a(d+1)+1)2(n—t)+12(k—1)l

2
< 9B (n—kl)+ P at G o (n—t)+19(k—1)!
d

= Q|

— 9% (n—kD+ % tat g+ G5 o(n—t)+19(k—1)l

< 957 (n=kD+ag(n—t)+19(k=1)l

(since t € [n — ¢ + 1,n].) This is the point at which the difference between the
cases of k = 2 and k > 3 arises. (We need PRl < 29" but if £ = 2 this cannot
happen since we have 2" = 23, ) Then, summing over [ from 1 to %, we find
the number of (x)-free sets with least element [ < 7 is

1 — 9~ S5 (ntk)

1—2- %7k

< 2929M2
= 2atlgam,

d+1
299 2a ™

So we have that h,, < 2¢+120m 4 2an |}
Next we shall show that we may choose ¢ independent of n. We know
1 aq qg+loan an
so let ¢ = 2973, Then if n < ¢,
fn < 29",
Assume f, < 2% for r < n. Then
3¢
fn < (Z + 1)2on

< 2™

as desired I
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