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Abstract. Cameron introduced a natural probability measure on the set S of
sum-free sets, and asked which sets of sum-free sets have a positive probability
of occurring in this probability measure. He showed that the set of subsets
of the odd numbers has a positive probability, and that the set of subsets of
any sum-free set corresponding to a complete modular sum-free set also has
a positive probability of occurring. In this paper we consider, for every sum-
free set S, the representation function rS(n), and show that if rS(n) grows
sufficiently quickly then the set of subsets of S has positive probability, and
conversely, that if rS(n) has a sub-sequence with suitably slow growth, then the
set of subsets of S has probability zero. The results include those of Cameron
mentioned above as particular cases.

1. Introduction

Let S be a subset of N = {1, 2, 3, . . .} or Zm = {0, 1, 2, . . . ,m− 1}; we shall say
that S is sum-free (with respect to addition or (mod m) addition respectively) if
for all x, y ∈ S, x + y 6∈ S. In order to distinguish between the two cases we shall
adopt the following convention: if S ⊂ N then we shall refer to S as a sum-free
set; if S ⊂ Zm then we shall refer to S as a modular sum-free set, as a sum-free set
in Zm, or as a sum-free set (mod m) (according to whether we wish to specify the
value of the modulus). We denote by S the set of all sum-free sets S ⊂ N.

Given any set S̄ ⊂ Zm, say {s1, s2, . . . , sk} we may easily construct a corre-
sponding set S ∈ S; indeed let S be the set of all elements of N which are congruent
to an element of S̄ (mod m), i. e. the set S is the union of the residue classes
Si = {s|s ≡ si (mod n)}. It is clear that if S̄ is sum-free (mod m) then the cor-
responding set S ⊂ N is a sum-free set. If m is the least modulus for which S
corresponds to a set which is sum-free (mod m), then we say that S is periodic
with period m. Clearly S is periodic if and only if there is an m so that for every
n ≥ 1, n ∈ S if and only if n + m ∈ S. If S differs from a periodic set by only
finitely many elements, then we say that S is ultimately periodic. Otherwise we say
that S is aperiodic.

We say that a sum-free set S is ultimately complete if there exists n0 so that
for every n ≥ n0, if n 6∈ S then there exist x, y ∈ S with x + y = n. A modular
sum-free set S̄ is complete if for every n 6∈ S there exist x, y ∈ S with x + y = n.

For S ∈ S, define rS(n) to be the number of solutions to the equation x + y = n
with x, y ∈ S, x ≤ y. This function is the representation function of Halberstam
and Roth [?]. Clearly, S is ultimately complete if and only if rS(n) is positive for
all sufficiently large n 6∈ S.

Cameron introduced the following simple bijection between the sets 2N and S.
Let σ be an element of 2N, say σ1σ2σ3 . . . where σi ∈ {0, 1} for every i. Construct a
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sum-free set θ(S) recursively, by considering each n in turn: if it is not an element
of S + S, put n in S if the next entry in σ is 1, and discard if the next entry is 0.
This bijection is more naturally expressed in terms of tossing coins: for each n, if n
is not in S + S, toss a coin: if the coin is heads, put n in S: if it is tails, discard it.
Note that we do not need to toss a coin (or consider an entry in σ) if n ∈ S + S.

The natural probability measure on 2N, tossing a coin infinitely often, together
with the bijection θ, thus induce a induces a corresponding probability measure p
on S, and it is natural to ask the question: for which subsets T ⊆ S can we calculate
p(T)? We shall restrict ourselves to considering the case where T = P(S) is the set
of subsets of S.

Firstly, we have the following results, due to Cameron [?, ?]

Proposition 1. Let S be a sum-free set which is not ultimately complete, say
n1, n2, n3, . . . ∈ N \S are such that rS(ni) = 0, i. e. there are no representations of
ni of the form x + y = ni, x, y ∈ S for any i. Then

p(P(S)) = 0.

Proof Let pn denote the probability that each of the elements less than or equal
to n of a random sum-free set T are in S, i. e. T ∩ {1, 2, ..., n} ⊆ S ∩ {1, 2, ..., n}.
Then for each i, pni+1 ≤ 1

2pni . Now,

p(P(S)) = lim
n→∞

pn ≤ lim
i→∞

2−i = 0.

�
Essentially this proof works because every element of the sequence θ−1(T ) which

corresponds to an ni is constrained to be zero: each of these decreases the value of
p(P(S)) by a factor of 2; as there are infinitely many such ni, p(P(S)) = 0.

Corollary 1. Let S, T be sum-free sets, and suppose that S 4 T , the symmetric
difference between S and T , is not finite. Then

p(P(S∩T )) = 0.

Proof S 4 T is an infinite set of elements which are not expressible as sums in
S ∩ T . From Proposition 1, p(P(S ∩ T )) = 0. �

The first successful approach to the question “for which S is p(P(S)) > 0?” was
by Cameron [?], who proved:

Theorem 1. Let S = {1, 3, 5, 7, 9, 11, . . .}. Then

0.21759 . . . ≤ p(P(S)) ≤ 0.21862 . . .

Proof See Cameron [?].
Cameron was mainly concerned with the case where S is a periodic sum-free set:

in [?] he used the Fortuin-Kasteleyn-Ginibre [?] inequality to generalise the above
result as follows.

Theorem 2. Let S̄ be a complete sum-free set (mod S) and let S be the correspond-
ing sum-free set in N. Then p(P(S)) > ((c/2)m−k) where k = |S̄|, and c = 0.218 . . .
is the probability that a random sum-free set is contained in {1, 3, 5, 7, 9, . . .}

Proof See Cameron [?].
Cameron conjectured, following this result, that with probability 1, a random

sum-free set is contained in some modular complete sum-free set. If true, this
conjecture would have two related, but distinct consequences:
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(i) The only sets S for which p(P(S)) > 0 would be those corresponding to complete
sum-free sets (mod S).
(ii) If T =

⋃
S

P(S) where the union is taken over all sets of the above form, then

p({S | S 6∈ T}) = 0.

In Section 2 we shall show that this conjecture is in fact false.
Cameron [?] also gave a partial converse to Theorem 2 which can be stated as

follows:

Theorem 3. If the sum-free set S in N is ultimately periodic, ultimately complete,
and the corresponding modular sum-free set S̄ is not complete, then p(P(S)) = 0.

We shall prove the following slightly stronger theorem: the proofs use essentially
the same ideas, so we shall just prove the latter.

Theorem 4. If a sum-free set S is ultimately complete, and there exists a finite
set B such that S \B is incomplete, then p(P(S)) = 0.

Proof As usual let pn denote the probability that a random sum-free set U has all
terms ≤ n contained in S, i. e.

pn = p({U | U∩{1, 2, . . . , n} ⊆ S}).

Let n1, n2, . . . , nk, . . . be elements of N \ S such that
(i) 6 ∃x, y ∈ S \B such that x + y = ni

(ii) ni+1 > 2ni for each i.
We shall show that pni+1 ≤ pni(1 − 2−|B|−1) so that pn → 0, proving our result.
Let En denote the event that

U∩{1, 2, . . . , n} ⊆ S∩{1, 2, . . . , n},

so that Ei ⊇ Ei+1 ⊇ Ei+2 ⊇ . . ., and pn = p(En). Assume that Eni
holds. Then if

Eni+1 holds, either
(i) at least one of ni+1 − b ∈ S for b ∈ B, or
(ii) there is a 0 in the string θ−1(U) in the position corresponding to ni.
The probability of (i) is ≤ 1 − 2|B|, say q; the probability of (ii) is ≤ (1 − q)/2.
Thus

p(Eni+1 | Eni),

the probability of Eni+1 given Eni satisfies

p(Eni+1 | Eni) ≤ q + (1− q)/2
= 1/2 + q/2
= 1/2 + 1/2− 2−|U |/2
= 1− 2−|U |−1.

Therefore pni+1 ≤ pni(1− 2−|U |−1) as stated. �
These results answer questions about p(P(S)) mainly when S is ultimately pe-

riodic: if S is sum-free, ultimately complete, and ultimately periodic, with period
m, then p(P(S)) > 0 only if the corresponding set S̄ (mod S) is sum-free complete;
if S is periodic and ultimately complete then p(P(S)) > 0.
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2. The probability that a random sum-free set U is contained in a
given sum-free set.

We now take a different approach to the problem: recall the definition of the
representation function: rS(n) denotes the number of representations of n in the
form

n = x + y, x, y ∈ S, x ≤ y.

Observe that rS(n) = 0 if n ∈ S, and that if S is ultimately complete then for some
n0, rS(n) > 0 for all n > n0, n 6∈ S . Thus, if p(P(S)) > 0 then by Proposition 1 it
is necessary that rS(n) > 0 for all n > n0, n 6∈ S. Further, from Theorems 3 and
4 there are sets for which rS(n) has a bounded subsequence rS(nk), and for which
p(P(S)) = 0. What is the relationship between rS(n)) and p(P(S))? We prove that
if rS(n) grows sufficiently quickly then p(P(S)) > 0 (Theorem 5) and that if rS

does not grow sufficiently quickly then p(P(S)) = 0 (Theorem 6).

Theorem 5. If there exists c > 1/(2 − log2 3) and n0 such that rS(n) > c log2 n
for all n > n0, n 6∈ S then p(P(S)) > 0.

Proof It is sufficient to show that there exists a subset U of P(S) of positive
probability, since p(P(S)) ≥ p(U) > 0. Let

S1 = {n | n ∈ S, n < n1}

S2 = {n | n ∈ S, n ≥ n1}.
where n1 will be chosen later in a suitable fashion. Further, for any set T define

T (n) = {t | t ∈ T, t ≤ n}.
We shall show that the set

U = {S1 ∪ T |T ∈ P(S2)}
satisfies p(U) > 0. Observe that

U = {T |S1 ⊆ T ⊆ S}
so that U consists of precisely those subsets of S which contain S1.

Suppose that k ∈ N\S, n1 < k < n. How many subsets T of S2(n) are such that
T ∪ S1 does not contain x, y such that x + y = k? There are rS(k) pairs x, y ∈ S
such that x + y = k; therefore the number of such subsets T is at most

(1) 2|S2(n)|−2rS(k)3rS(k) = (
3
4
)rS(k)2|S2(n)|

since if x + y = k, then x and y cannot both be in T ; thus only 3 of the 4 possible
cases may occur:

x 6∈ T, y 6∈ T

x ∈ T, y 6∈ T

x 6∈ T, y ∈ T.

Thus for each pair x, y there is a contribution of at most 2−23 to the product. (If
k is even, and k/2 ∈ S then the number of subsets is slightly smaller; however, the
upper bound given in 1 still holds. Further, if x < n1 for some pair, then y 6∈ T ,
so the contribution to the product is 2−1 < 2−23, so the upper bound still holds.
If both x and y are less than n1 then the contribution to the product is zero, and
so the number of such subsets is zero.) Thus the number of subsets T of S2(n) for
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which there is at least one value of k 6∈ S such that k must be explicitly excluded
(i. e. 6 ∃x, y ∈ T, x + y = k),n1 ≤ k ≤ n, is at most∑

n1≤k≤n

k 6∈S

(
3
4
)rS(k)2|S2(n)| = 2|S2(n)|

∑
n1≤k≤n

k 6∈S

(
3
4
)rS(k)

< 2|S2(n)|
∑
k≥n1
k 6∈S

(
3
4
)rS(k)

< 2|S2(n)|
∑
k≥n1
k 6∈S

(
3
4
)c log2 k

< 2|S2(n)|
∑

k≥n1

(
3
4
)c log2 k

This sum converges if c > 1
log2 4−log2 3 . Certainly c = 3 will suffice.

Suppose now that T ⊆ S2(n) is such that each k 6∈ S, n1 ≤ k ≤ n is represented
as a sum x+y = k, x, y ∈ S1∪T . Then the length of the binary sequence generating
S1 ∪ T up to n is a constant (depending upon n and n1, but independent of T ).
This length is at most

n1 + |S2(n)|.
Thus the number of sequences of length n1+|S2(n)| generating a subset of S1∪S2(n)
is at least

2|S2(n)|(1−
∑

k≥n1

(
3
4
)c log2 k).

We thus have the probability that a sequence σ generates a subset of S1 ∪ S2(n) is
at least

2−n1−|S2(n)|2|S2(n)|(1−
∑

k≥n1

(
3
4
)c log2 k)

= 2−n1(1−
∑

k≥n1

(
3
4
)c log2 k).

Observe that this quantity is independent of n.
We shall now show that we may choose n1 in such a way that this quantity is

positive: indeed, since ∑
k≥n1

(
3
4
)c log2 k

converges, we may choose n1 sufficiently large that∑
k≥n1

(
3
4
)c log2 k <

1
2
.

Then the probability that a sequence of length n1+l generates a subset of S1∪S2(n)
is greater than 2−(n1+1). Consequently

p(P(S)) ≥ 2−(n1+1) > 0.

as required. �
As an immediate corollary we have
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Corollary 2. If S̄ is modular sum-free complete, mod(m), then p(P(S)) > 0.

Proof. Indeed,

rS(n) > (
1

2m
− ε)n

for all n sufficiently large, n 6∈ S. �
We note, however, that the numerical bounds obtained by Cameron [?] are better

than those obtained by this method of proof.
Observe that Theorem 4 demonstrates that a certain class of sum-free sets for

which rS(n) contains a bounded subsequence satisfy p(P(S)) = 0. It is natural to
ask then whether the existence of such a bounded subsequence is sufficient to ensure
that p(P(S)) = 0. This turns out to be true; in fact the following, significantly
stronger statement is true.

Theorem 6. Let ck be such that
∑

2−ck diverges. Then if S is a sum-free set such
that there is a subsequence {nk} of N \ S such that rS(nk) = ck and nk+1 > 2nk,
then p(P(S)) = 0.

Proof. Let Ek denote the event that nk is excluded by smaller elements of a
random sum-free set U , (i. e. that ∃x, y ∈ U, x+y = nk). For any Boolean function
B of E1, E2, . . . , Ek−1 we have

p(Ek|B(E1, E2, . . . , Ek−1)) < 1− 2−ck

since nk will certainly not be excluded if, for every pair x, y ∈ S, x < y, x+y = nk,
the element y is missing from U . As each of these elements is larger than nk−1, the
probability that each of these is missing is 2−ck .

Now let Fk be the event that

U ∩ {1, 2, . . . , nk} ⊆ S ∩ {1, 2, . . . , nk}
so that

p(P(S)) = lim
k→∞

p(Fk)

Clearly Fk+1 implies Fk, so that

p(Fk) = p(Fk|Fk−1)p(Fk−1|Fk−2) . . . p(F2|F1)p(F1)

Furthermore,

p(Fk+1|Fk) < 1− 2−ck+1
1
2

= 1− 2−ck+1−1

We thus have

p(Fk) ≤
k∏

i=1

(1− 2−ci−1)

Since
∑

2−ci diverges, we have

lim
k→∞

p(Fk) ≤
∞∏

i=2

(1− 2−ci−1) = 0

Thus, as claimed, p(P(S)) = 0. �
In order for

∑
2−ci to diverge, it is sufficient that ck < log2 k. Unfortunately

there remains a gap between Theorem 5 and Theorem 6; this can be seen in the
following corollary.

Corollary 3. Let S be a sum-free set for which rS(n) < log2 log2 n for all suffi-
ciently large n. Then p(P(S)) = 0.
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Proof. Indeed, such a set clearly contains a subsequence {nk} for which

rS(nk) < c + log2 k

for k sufficiently large, for which nk+1 > 2nk. Thus p(P(S)) = 0. �
Essentially the gap that we have is that if

∑
2−rS(n) converges, then the cor-

responding probability is positive; if the sum diverges, this is not enough by itself
to show that the probability is zero; we require that the sum of a relatively thin
subsequence also diverges. In order to prove any stronger results, to close this gap,
it would probably be necessary to consider the dependencies of various random
variables in great detail.

We shall now show that Cameron’s conjecture is false; indeed, the following set
is a counterexample: let

S0 = {1, 4, 10, 12, 17, 19, 26, 32, 35}

be the set of integers s, 1 ≤ s ≤ 35 which are congruent to elements of the smallest
asymmetric complete sum-free set, and let Si, i ≥ 1 be defined by

Si = {−s + 32(i + 1) | s ∈ S0}.

Let S = S0 ∪ S1 ∪ S2 ∪ . . .; it is easily seen that S is sum-free. Clearly rS(n) grows
linearly for n 6∈ S, so by Theorem 5, p(P(S)) > 0. We have seen thus that this set
S is a counterexample to Cameron’s “main conjecture”; it does not however imply
that there is no similar result possible.

3. The density of a random sum-free set

In [?], Cameron proved a result for modular complete sum-free sets similar in
nature to the strong law of large numbers, namely the following:

Theorem 7. If S̄ is a complete sum-free set mod(m), then, conditioned upon U ⊆
S, U almost surely has density |S̄|/2m, i. e. half the density of S.

We can extend the scope of this Theorem to include the sum-free sets shown in
Theorem 5 to have p(P(S)) > 0.

Theorem 8. Let S be a sum-free set such that rS(n) > c log2 n for all n ≥ n0,
n 6∈ S, where c > 3/(2 log2 4− 2 log2 3), and suppose that S has asymptotic density
d. Then, conditioned upon U ⊆ S, a random sum-free set U almost surely has
density equal to d

2 .

Proof Let S = {s1, s2, . . .}. Define the random variable Xi by

Xi =
{

1 if si ∈ U
0 if si 6∈ U

and define

(2) Yn =
n∑

i=1

Xi.

We shall show that Yn/n → 1/2 almost surely. For this we require the following
Lemma:
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Lemma 1. For any set S such that p(P(S)) > 0 the following are true:
(i) p(U ∩ {1, . . . , n} ⊆ S) ≤ p(U ⊆ S) + k1n

−1/2

(ii) |p(Xn = 1|U ⊆ S)− 1/2| = O(n−1/2)
(iii) For any (ε1, ε2, . . . , εn) ∈ {0, 1}n p(X1 = ε1, X2 = ε2, . . . , Xn = εn|E) ≤ c32−n

for some c3.

Proof (i) Let E be the event that U ⊆ S, and let En be the event that U ∩
{1, 2, . . . , n} ⊂ S. Then

⋂
n En = E and En ⊇ En+1, so we have

p(En)− p(E) =
∞∑

i=n

(p(Ei)− p(Ei+1))

=
∞∑

i=n

p(Ei and i + 1 6∈ S and i + 1 ∈ U).

We shall estimate the value qi of p(Ei and i + 1 6∈ S and i + 1 ∈ U) as i → ∞.
Clearly qi = 0 if i+1 ∈ S, so we shall assume that i 6∈ S. Then, since S is ultimately
complete, if i is sufficiently large we may assume that there exist rS(i + 1) pairs
x, y ∈ S such that x + y = i + 1. Since U is sum-free, and contains i + 1, for each
such pair at most one of x and y is contained in U . Let |S ∩ {1, 2, . . . , i}| = r.
Then each of the possible events in Ei has probability at most 2−r, since for a set
U in Ei, θ−1(U) contains an entry corresponding to each element of S (and quite
possibly entries corresponding to non-elements of S). Of the 2r such sequences, at
most (3/4)rS(i+1)2r satisfy the condition that at least one of x, i + 1− x is missing
from U . Thus the ith term of the summation, qi, satisfies

qi ≤ (
3
4
)rS(i+1).

Since
∞∑

i=n,i+1 6∈S

(3/4)rS(i+1) = O(n−1/2)

we have
(i) p(U ∩ {1, 2, . . . , n} ⊆ S) ≤ p(U ⊆ S) + k1n

−1/2

as claimed.
(ii) Clearly, if the event Esn−1 holds then sn is not the sum of two smaller numbers
x, y ∈ U , since U ∩ {1, 2, . . . , sn − 1} is sum-free, being contained in S. Thus

p(Esn−1 and sn ∈ U) =
1
2
p(Esn−1).

Also
p(E) ≤ p(Esn−1) ≤ p(E) + k1n

−1/2,

so

p(E and (sn ∈ U)) = p(E)− p(Eand(sn 6∈ U))
≥ p(E)− p(Esn−1 and (sn 6∈ U))
= p(E)− 1/2p(Esn−1).

Thus

|p(E and (Xn = 1))− 1
2
p(E)| = O(n−1/2).
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(iii) The probability that we must estimate is

p(E and (X1 = ε1) and (X2 = ε2) and . . . and (Xn = εn))/p(E)

≤ p((X1 = ε1) and (X2 = ε2) and . . . and (Xn = εn)
and all other numbers < sn are missing)/p(E)

≤ 2−n/p(E).
�

We shall now complete the proof of Theorem 8. Let Un = |Yn − n/2|. Then
Un+1 = Un + 1/2 if either Un = 0 or Xn+1 − 1/2 has the same sign as Yn − n/2,
while Un+1 = Un − 1/2 otherwise. Now so

E(Un+1|E) = E(Un|E) + O(n−1/2) + O(n−1/2).

Summing we obtain
E(Un|E) = O(n1/2).

Thus
p(|Yn

n − 1
2 | > ε) = p(Un > εn)

= O(n−1/2/ε).
Now

p(|Yn3

n3
− 1

2
| > ε) = O(n−3/2/ε).

Therefore
p(

Yn3

n3
6→ 1

2
) ≤ lim

m→∞

∑
n≥m

O(n−3/2/ε) = 0.

Thus Yn3

n3 → 1
2 almost always. Now, if p is such that n3 ≤ p ≤ (n + 1)3 then

since Yn3 ≤ Yp ≤ Y(n+1)3 we have

Yn3

(n + 1)3
≤ Yp

p
≤

Y(n+1)3

n3

Since n3

(n+1)3 → 1 this implies that Yp

p → 1
2 almost always. �
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