Homework 4, due: 02/24

MATH 9830, Spring 2015 Timo Heister, heister@clemson.edu

0. Before you start:

e Read the description of tutorial step-4, optionally watch the linked videos.

e Familiarize yourself with 04_threads_hello and 05_threads_ex1 and run them on your
computer.

e Submit your code via email. Print all output mentioned in programming exercises.

1. Think of an example in real life (like the “digging a hole” example in class) of a task that
can be done using a certain number of workers N. Identify a serial part, a perfectly parallel
part, and a third part that grows proportional with N.

(a) Ignoring the third part, apply Amdahl’s law and determine the maximum speedup for
your example (make up numbers as you go).

(b) Now include the third part and determine the maximum speedup (what value of N
gives it)?

2. step-4

(a) Write a member function void mesh_info() that prints the following information about
the triangulation to the screen: 1) number of active cells, 2) number of active/used
vertices, lines, quads, hexs (only if appropriate for the dimension!).

(b) Use VectorTools: :compute mean value (see step-3) and verify the convergence order
of the mean in 2d and 3d.

(¢) Change the mesh to an L-shape, only apply boundary values to the faces adjacent to the
center (see set_boundary_indicator () in the step-3 description), change the boundary
values to be 1+ ||z|| and the right-hand side to be 1. Finally, learn how to visualize your
solutions in ParaView (or Vislt) and generate a 2d and a 3d picture (print or email).

3. Multithreading

(a) Determine the number of (virtual) cores in your machine (hint: /proc/cpuinfo). Figure
out if your machine uses hyperthreading.

(b) Implement multithreaded vector addition based on 06_threads_ex2 and find the opti-
mum number of threads for your machine (try anything between 1 and twice the number
of cores in your system, the commandline tool time might help).

