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A primal-dual active set method and
predictor-corrector mesh adaptivity for computing
fracture propagation using a phase-field approach

Timo Heister ∗ Mary F. Wheeler † Thomas Wick ‡

In this paper, we consider phase-field-based fracture propagation in elastic media. The
main purpose is the development of a robust and efficient numerical scheme. To enforce
crack irreversibility as a constraint, we use a primal-dual active set strategy, which can
be identified as a semi-smooth Newton’s method. The active set iteration is merged with
the Newton iteration for solving the fully-coupled nonlinear partial differential equation
discretized using finite elements, resulting in a single, rapidly converging nonlinear scheme.
It is well known that phase-field models require fine meshes to accurately capture the
propagation dynamics of the crack. Because traditional estimators based on adaptive
mesh refinement schemes are not appropriate, we develop a predictor-corrector scheme for
local mesh adaptivity to reduce the computational cost. This method is both robust and
efficient and allows us to treat temporal and spatial refinements and to study the influence
of model regularization parameters. Finally, our proposed approach is substantiated with
different numerical tests for crack propagation in elastic media and pressurized fracture
propagation in homogeneous and heterogeneous media.

1 Introduction

Presently, crack propagation in elastic and porous media is one of the major research topics in mechan-
ical, energy, and environmental engineering. In recent years, variational approaches and phase-field
techniques for brittle fracture have gained increased interest from studies presented in [1–8]. Instead
of modeling the discontinuities explicitly (like in the extended finite element method [9] or generalized
finite elements [10]), the lower-dimensional crack surface is approximated by a phase-field function.
This is an indicator function, which introduces a diffusive transition zone (brittle or mushy-zone are
also common expressions depending on the discipline) between the broken and the unbroken material.
Most importantly, fracture nucleation, propagation, kinking, and curvilinear paths are automatically
included in the model; post-processing of stress intensity factors and remeshing resolving the crack
path are avoided.
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From a numerical viewpoint, the key aspects of the phase-field-based fracture propagation approach
are techniques that include fine meshes around the crack, the solution of the resulting energy func-
tional or its characterizing weak formulated Euler-Lagrange equations, and the enforcement of the
irreversibility of crack growth. To solve for the admissible displacements and the phase-field values,
we use the Euler-Lagrange equations to employ a Galerkin finite element scheme. This means that
we obtain a critical point rather than a global minimizer. Here, a non-symmetric semi-linear form
is obtained, which can not be characterized as a minimization procedure [11]. However, such a for-
mulation allows the extension to quasi-static poroelasticity [12, 13] . In addition, the Euler-Lagrange
form allows more complicated interface laws in coupling fracture propagation with other physics; a
motivation can be found in [14].

For the crack irreversibility, we employ a robust primal-dual active set strategy based on [15] (as
often used for contact problems, e.g. [16]). An active set method is highly attractive because it
can be interpreted as a semi-smooth Newton method and allows for fast (super-linear) convergence.
In contrast to other methods such as simple penalization or augmented Lagrangian methods, the
adjustment of additional parameters is not necessary. For an overview of algorithms we refer the
reader to [17].

Within the active set iteration, the coupled Euler-Lagrange PDE system is addressed monolithi-
cally in which both equations, elasticity and phase-field, are solved simultaneously. We propose a
robust numerical scheme to treat the non-convexity of the regularized energy functional and resulting
consequences on the Euler-Lagrange system.

Phase-field methods require fine meshes in crack regions resulting in high computational cost. To
address this issue, we propose a predictor-corrector local mesh adaptivity scheme. It does not require
any a priori knowledge of the crack path and therefore, the number of degrees of freedom grows
during the computation. Therefore, it is much more efficient than global as well as a priori local mesh
refinement; because there, the final numbers of degrees of freedom are already present in the initial
set-up.

We briefly summarize the novelty of results presented in this paper:

• a well-known, robust, semi-smooth Newton method for treating variational inequalities is com-
bined with phase-field for fracture propagation;

• a robust (heuristic) procedure based on extrapolation of known phase-field values to cope with
the non-convexity of the energy functional allows formulation of a monolithic scheme for the
forward problem;

• an efficient predictor-corrector mesh adaptivity scheme is developed that allows the mesh to
grow during the computation rather than a priori refinement. The algorithm guarantees that
the local mesh size h is always smaller than the constant phase-field regularization parameter ε;

• insensitivity of crack growth with respect to the mesh structure; a crucial property of the algo-
rithm.

The paper is organized as follows: In Section 2, we introduce the notation and recapitulate the
energy functional. Then, in Section 3, the primal-dual active set strategy to enforce the irreversibility
condition on the crack growth is derived. The semi-smooth Newton method for the active set is then
merged with the Newton method for the nonlinear PDE, which is solved in terms of monolithically-
coupled Euler-Lagrange equations. Section 4 introduces a predictor-corrector local adaptive mesh
refinement technique. Finally, in Section 5 several numerical tests and benchmarks are used to sub-
stantiate our algorithmic developments. These tests include fracture propagation in elasticity and
pressurized cracks in heterogeneous elasticity as well as sensitivities studies with respect to the mesh.
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2 Notation and Equations

In this section, we provide the basic notation and the weak form of the underlying equations. We
denote the L2 scalar product with (·, ·) as frequently used in the literature. In the following, let Ω ⊂ R2,
be a smooth, open, connected, and bounded set. We assume that the crack C is a 1-dimensional set, not
necessarily connected, that is contained in Ω. We assume (possibly time-dependent non-homogeneous)
Dirichlet boundaries conditions on (part of) the boundary ∂ΩD ⊆ ∂Ω.

2.1 The energy functional

The Francfort-Marigo functional [1] (based on the Mumford-Shah functional) describes the energy of
a crack in an elastic medium as

E(u, C) =
1

2

(
σ, e(u)

)
−
∫
C
τ · u ds+GcH

1(C), (1)

where u : Ω → R2 is the displacement, σ = σ(u) the stress tensor, and e(u) the symmetric strain
tensor defined as

e(u) :=
1

2

(
∇u +∇uT

)
.

The Hausdorff measure H1(C) denotes the length of the crack and is multiplied by the energy release
rate Gc > 0. Traction forces on the crack boundary are denoted by τ .

In [12, 13] the functional (1) was augmented with a pressure term in order to account for pressurized
fracture propagation. The idea is to assume −pI as a leading order of stress in C and standard
calculations yield ∫

C
τ · u ds =

∫
C
σn · u ds = −

∫
C
pn · u ds =

∫
Ω
p∇ · u +

∫
Ω
∇pu.

Combining this term with the poroelastic stress σporo = σ − αpI (with Biot’s coefficient α ∈ [0, 1]),
and including the phase-field variable ϕ (see [12, 13]), we obtain the representation as included in the
following functional:

E(u, C) =
1

2

(
σ, e(u)

)
− (α− 1)(ϕ2p,div u) + (ϕ2∇p,u) +GcH

1(C) (2)

where p : Ω→ R is a given pressure.

Remark 2.1. In poroelastic applications, the pressure p is obtained from solving a pressure Darcy
equation. This coupled system is solved with a fixed-stress iteration [18, 19] in which the pressure
equation and elasticity equation are solved sequentially. The pressure gradient term ϕ2∇p is obtained
from the interface where the fluid pressure in the crack interacts with poroelastic fluid flow [12, 14].
For a given, piece-wise constant, pressure this term is zero and neglected in the rest of this paper.
In addition, Biot’s coefficient is chosen as α = 0. Both terms appear in situations as investigated in
[20–22].

Remark 2.2. One easily observes that the pressurized crack phase-field model contains crack propa-
gation in pure elasticity as special case if p = 0. Consequently, we can model and compute various
fracture propagation scenarios within elasticity employing our approach, which is demonstrated in the
numerical examples.

In the remainder of this paper, we represent the crack C using a continuous phase-field variable
ϕ : Ω → [0, 1], where a value of 0 represents the crack region. This introduces a diffusive transition
zone between the broken and unbroken material controlled by the regularization parameter ε > 0.
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Remark 2.3. Relating Γ convergence and spatial discretization, it is well-known that h = o(ε). In this
work, studies for investigating ε and its relationship to the mesh size parameter h are carried out. In
this respect, we notice that the ε might be considered as a (fixed) length-scale parameter that might
have a physical meaning, which is subject of investigation in gradient-type material modeling ([4, 23]
and references cited therein).

Using ε allows us to replace the crack surface energy GcH
1(C) in (1) by an elliptic Ambrosio-

Tortorelli functional [24, 25] Gc

(
1
2ε‖1 − ϕ‖

2 + ε
2‖∇ϕ‖

2

)
and formulating a global constitutive dissi-

pation functional for a rate independent fracture process. In addition, we allow for correct modeling
of shear forces under compression, following [4] we decompose the stress tensor (i.e., the energy) into
tensile σ+ and compressive σ− parts, which then yields:

Eε(u, ϕ) =
1

2

((
(1− κ)ϕ2 + κ

)
σ+(u), e(u)

)
+

1

2
(σ−(u), e(u))

− (α− 1)(ϕ2p,div u)

+Gc

(
1

2ε
‖1− ϕ‖2 +

ε

2
‖∇ϕ‖2

)
,

(3)

where κ is a positive regularization parameter for the elastic energy, with κ� ε and standard linear
elasticity with the stress-strain relationship

σ := σ(u) = 2µe(u) + λ tr(e(u))I.

Remark 2.4 (The role of the regularization parameter κ). The parameter κ regularizes the bulk energy.
It is evident that this parameter should be as small as possible to avoid over-estimation of bulk energy
(resulting in an under-estimation of the surface crack energy). In practice this means: the larger the
value of κ, the slower the crack will grow. There are theoretical studies in which this parameter is not
used at all [26] and if it is, it should be chosen as κ = o(ε) such that Γ convergence results remain
valid. In [2], the authors provide explanations of its role. In [6], the authors state that in several of
their numerical studies they observed that κ could be set to zero. Instead of setting κ to zero, we
chose small values in the order of 10−10 and found that this choice does not influence the solutions.

Furthermore, in the energy functional (3), we use (see [5, 6])

σ+ = 2µe+ + λ < tr(e) > I,

σ− = 2µ(e− e+) + λ
(
tr(e)− < tr(e) >

)
I,

and
e+ = PΛ+P T ,

where < · > is the positive part of a function. Moreover, for d = 2,

Λ+ := Λ+(u) :=

(
< λ1(u) > 0

0 < λ2(u) >

)
.

where λ1(u) and λ2(u) are the eigenvalues of the strain tensor e, and v1(u) and v2(u) the corresponding
(normalized) eigenvectors. Finally, the matrix P is defined as P := P (u) := (v1, v2); namely, it consists
of the column vectors vi, i = 1, 2.

To compute the crack path, we seek vector-valued displacements u and the scalar-valued phase-field
ϕ such that the total energy Eε(u, ϕ) is minimized. This problem is completed with an inequality
constraint with the condition that cracks keep their length or grow in time:

4 Accepted for publication in CMAME, March 2015



Formulation 1 (Fracture energy minimization with irreversibility constraint). Find u and ϕ for
almost all times t such that

minEε(u, ϕ) s.t. ∂tϕ ≤ 0. (4)

The time t enters through time-dependent boundary conditions, e.g., u = u(t) = g(t) on ∂ΩD with a
prescribed boundary function g(t) of Dirichlet-type (see Section 5.4) or through time-dependent right
hand side forces, e.g., p := p(t) as used in Section 5.6.

Remark 2.5. The fracture energy minimization is formulated in terms of quasi-static assumptions.
Here, time t refers rather to a loading step parameter than a true time.

2.2 The Euler-Lagrange equations

Finally, the weak form is derived from problem formulation (4) by taking the first variation with respect
to the solution variables. For this, let V := H1

0 (Ω), Win := {w ∈ H1(Ω)|w ≤ ϕn−1 ≤ 1 a.e. on Ω}
(where ϕn−1 denotes the previous time step solution of ϕ), and W := H1(Ω).

Formulation 2 (Euler-Lagrange system of Formulation 1). Find (u, ϕ) ∈ V ×W with((
(1− κ)ϕ2 + κ

)
σ+(u), e(w)

)
+ (σ−(u), e(w))

− (α− 1)(ϕ2p, div w) = 0 ∀w ∈ V,
(5)

as well as
(1− κ)(ϕ σ+(u) : e(u), ψ−ϕ)− 2(α− 1)(ϕ p div u, ψ−ϕ)

+Gc

(
−1

ε
(1− ϕ,ψ−ϕ) + ε(∇ϕ,∇ψ−ϕ)

)
≥0 ∀ ψ ∈Win ∩ L∞(Ω).

(6)

3 Solution Algorithm and Discretization

This first key section introduces the solution algorithm. In Sections 3.1 to 3.4, we first formulate a
primal-dual active set strategy as the overall solution algorithm; including continuous forms and their
corresponding discretization. Specifically, this penalization strategy is required to treat the constraint
∂tϕ ≤ 0 for crack irreversibility. We recall that the system is quasi-static and time enters only through
this constraint. In the second part that comprises the Sections 3.5 and 3.6, we focus on the PDE
that is required to be solved in each Newton active set step. This PDE is represented in terms of the
monolithically-coupled Euler-Lagrange equations. In particular, we explain a technique to convexify
the energy functional in order to obtain a positive definite Hessian matrix. Finally, we briefly explain
the spatial discretization and the block structure of the linear equation system.

3.1 Setup

We emphasize the minimization problem (see Formulation (1))

minEε(u, ϕ)

subject to ∂tϕ ≤ 0.

is quite unusual since the forward problem is quasi-static without any explicit time derivatives and
the time-dependence appears only in the inequality constraint. For the following, we set U = (u, ϕ) ∈
V ×W . Discretizing

∂tϕ ≈
ϕ(tn+1)− ϕ(tn)

δt
,
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with time step size δt := tn+1 − tn, the problem can be rewritten as

minEε(U) (7)

subject to U ≤ Ū on Φ, (8)

where Φ = 0 ×W , so that the constraint acts on the phase-field variable only, and Ū is the solution
from the last time-step (or the initial condition).

3.2 Newton iteration

We now briefly describe Newton’s method for solving the unconstrained minimization problem minEε(U)
in (7). We construct a sequence U0, U1, . . . , UN with

Uk+1 = Uk + δUk,

where the update δUk is computed as the solution of the linear system (details in Section 3.5):

∇2Eε(U
k) δUk = −∇Eε(Uk). (9)

If we assume the constraints on the phase-field (8) hold for the initial guess U0 (we will start with the
solution from the last time step, which satisfies the constraint), the condition

δUk ≤ 0 on Φ, (10)

implies Uk+1 = Uk + δUk ≤ Uk ≤ · · · ≤ U0 ≤ Ū on Φ.

3.3 A primal-dual active set strategy for crack irreversibly

Let us now derive a primal-dual active set strategy for the linear system (9) with constraint (10) to
be solved in each Newton step:

∇2Eε(U
k)δUk = −∇Eε(Uk),

with δUk ≤ 0 on Φ.

Here, in contrast to the work originally proposed in [15], the constraint relates two time states (within
a time-stepping scheme) rather than spatial constraints.

In the following, we shorten the notation by dropping the index k of Newton’s method and setting
G := ∇2Eε(U

k), F := −∇Eε(Uk) (this also highlights that our operator G is fixed in this section),
and δU := δUk. We note that ideally G is symmetric positive definite in order to employ a robust
solution scheme. The previous system can be written as a minimization problem

min
1

2
(δU,GδU)− (F, δU),

with δU ≤ 0 on Φ.
(11)

Following [15] the minimization problem (11) can be solved using a primal-dual active set strategy,
which can also be viewed as a semi-smooth Newton method. We briefly recapitulate the most impor-
tant steps since their understanding is crucial for our final algorithm. Using a Lagrange multiplier
λ ∈ 0 ×W ∗ (where W ∗ is the dual space of W ), the minimization problem with constraint can be
written as a system of equations:

(GδU,Z) + (λ, Z) = (F,Z) ∀Z ∈ V ×W,
C(δU, λ) = 0,
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where
C(δU, λ) = λ−max(0, λ+ cδU), (12)

for a given c > 0. The max operation is understood in the point-wise sense. Since we require the La-
grange multiplier only for the phase-field variable ϕ, we can assume zero displacements (alternatively,
one needs to restrict δU to the phase-field in the definition of C).

The primal-dual active set strategy replaces the condition C(δU, λ) = 0 by δU = 0 on the to be
determined active setA and λ = 0 on the inactive set I. In other words, the active set is the subdomain
in which the constraint applies and no PDE is solved. In the inactive set, the PDE is solved while the
constraint is satisfied.

The active set algorithm then reads:

Algorithm 3.1. Repeat for k = 0, . . . until the active set Ak does not longer change:

1. Compute active set:

Ak = {x | λk(x) + cδUk(x) > 0},
Ik = {x | λk(x) + cδUk(x) ≤ 0}.

2. Find δUk+1 ∈ V ×W and λk+1 ∈ 0×W ∗

(GδUk+1, Z) + (λk+1, Z) = (F,Z) ∀Z ∈ V ×W,
(δUk+1, µ) = 0 on Ak ∀µ ∈ 0×W ∗,

λk+1 = 0 on Ik.

So far, the algorithm has been formulated on a continuous level. Now, we employ a finite element
discretization by first subdividing the domain into quadrilateral elements. Displacements u and the
phase-field variable ϕ are discretized using H1-conforming bilinear elements, i.e., the ansatz and test
space uses Qc1-finite elements. Consequently, the discrete spaces are conforming such that Vh ×Wh ⊂
V × W . A discretized version of step 2 then results in a linear system with the following block
structure: (

G B
BT 0

)(
δUk+1

h

λk+1
h

)
=

(
F
0

)
.

By using a quadrature only in the support points of λkh, BT becomes diagonal and λkh can be eliminated
from the system. The equations BT δUk+1

h = 0 will be handled via linear constraints used to eliminate
equations in the G block where the phase-field is constrained (on Ak). The eliminated equations are
exactly those where the i-th entry of λk+1

h is non-zero. Therefore, the linear solve simplifies to

ĜδUk+1
h = F̂ ,

where Ĝ and F̂ stem from G and F by removing the constrained rows from the system (we opt to
restore symmetry by using Gaussian elimination on the columns in our implementation).

Finally, each entry of λh can be computed from Uk+1
h using

(B)ii(λ
k
h)i = (F )i − (GδUkh )i, (13)

which is needed in the computation of the active set A in each step. The index i is in the active set
Ak if

(B−1)ii(F −GδUkh )i + c(δUkh )i > 0, (14)

and in the inactive set I otherwise.

Remark 3.1. Note that we require the matrix G and right-hand side F without constraints in (13)
and (14).
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3.4 The final algorithm: Combining two Newton iterations

In our implementation we combine two Newton methods (active set and the nonlinear iteration for
the PDE solution; see Section 3.5) into a single update loop with variable δUk. This Newton loop
contains a back-tracking line search to improve the convergence radius. Finally, the condition for the
active set

(B−1)ii(F −GδUkh )i + c(δUkh )i > 0,

reads using the notation from before:

(B−1)ii(−∇Eε(Ukh )−∇2Eε(U
k
h )δUkh )i + c(δUkh )i > 0.

We replace the linear residual −∇Eε(Ukh )−∇2Eε(U
k
h )δUkh by the non-linear residual

R(Uk+1
h ) = −∇Eε(Uk+1

h ).

Remark 3.2. Because we merge two Newton iterations it is no longer correct to just require δUkh ≤ 0
(point-wise) in each step since an intermediate active set allows a temporary violation of the crack
growth condition during the Newton iteration. Therefore, we replace this condition with

Ukh + δUkh ≤ Uoldh
where Uoldh is the solution of the last time step.

This gives us the algorithm:

Algorithm 3.2. Repeat for k = 0, . . . until the active set Ak does not change and R̃(Ukh ) < TOL:

1. Assemble residual R(Ukh )

2. Compute active set Ak = {i | (B−1)ii(Rk)i + c(δUkh )i > 0}

3. Assemble matrix G = ∇2Eε(U
k
h ) and right-hand side F = −∇Eε(Ukh )

4. Eliminate rows and columns in Ak from G and F to obtain G̃ and F̃

5. Solve linear system G̃δUk = F̃ , i.e, find δUkh ∈ Vh ×Wh with

∇2Eε(U
k
h )(δUkh ,Ψ) = −∇Eε(Ukh )(Ψ) ∀Ψ ∈ Vh ×Wh, (15)

where ∇2Eε and ∇Eε are defined in Section 3.5 and 3.6.

6. Find a step size 0 < ω ≤ 1 using line search to get

Uk+1
h = Ukh + ωδUkh ,

with R̃(Uk+1
h ) < R̃(Ukh ).

Remark 3.3. It is worth pointing out, that the residual R̃(Ukh ) might be far below the desired tolerance,
however the active set can still change. Therefore, it is important to achieve both stopping criteria
simultaneously:

Ak+1 = Ak and R̃(Ukh ) < TOL .

Remark 3.4. It is important to distinguish between the full residual R(Ukh ) and R̃(Ukh ). The latter is
the residual on the inactive set, which can be computed by eliminating the active set constraints from
the former.

Remark 3.5. To address directly the numerical solution of the non-convex energy functional by mini-
mization, the alternate minimization algorithm with backtracking was suggested in [3, 27]. Here, it is
utilized by noting that the energy functional is convex in each single variable when the other is kept
fixed. The full convergence proof can be found in [28].
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3.5 A fully-coupled formulation of the Euler-Lagrange equations

For solving the forward PDE problem, we focus on a monolithic scheme in which all equations are
solved simultaneously resulting in one semi-linear form. However, it is well known that the energy
functional (3) is not convex simultaneously in both solution variables u and ϕ; but separately in
each variable while keeping the other fixed. Consequently, solving the Euler-Lagrange equations in
a straightforward way is not possible and influences the robustness of the solution scheme because

of a (possibly) indefinite Hessian matrix G. The critical terms are the cross terms
((

(1 − κ)ϕ2 +

κ
)
σ+(u), e(u)

)
and (ϕ2p,div u). In this work, we linearize by linear extrapolation and time-lagging

ϕ ≈ ϕ̃ := ϕ̃(ϕn−1, ϕn−2) in appropriate terms in order to obtain a convex energy functional. Here,
ϕn−1, ϕn−2 denote the solutions to previous time steps.

Proposition 3.3. The energy functional Eε(u, ϕ̃) (3) with the fixed ϕ̃ is convex.

Proof. Applying a fixed, extrapolated ϕ ≈ ϕ̃(ϕn−1, ϕn−2) yields the energy functional Eε(u, ϕ̃) (3)
instead of Eε(u, ϕ). Without the term (ϕ2p,div u), the convexity of the energy functional is obvious
and widely discussed in the literature. Adding (ϕ̃2p,div u) keeps the convexity because u is linear.

Remark 3.6. We note that in solving the variational Euler-Lagrange equations, a critical point (that
is a global or local minimum or even a saddle point) is computed. However, the objective in mini-
mizing a (non-convex) energy functional is to obtain a global minimum. We note that it might be
physically questionable to achieve this. Additionally, the numerical techniques based on the alternate
minimization algorithm with backtracking (fixing one variable while solving for the other in an itera-
tion process) does not guarantee convergence to the global minimum [3, 8, 27, 28]. In particular, the
latter two papers provide discussions when relating energy minimization to the variational formulation
in the presence of adaptive finite element discretizations. Considering the non-convex functional (3)
without a priori linearization, we refer the reader to [29] for additional algorithms in the context of
non-convex optimization.

Our strategy is as follows: In order to derive a monolithically-coupled variational formulation, we
first assume ϕ as given in (3) to obtain the Euler-Lagrange equations. In the first equation (i.e., the
Euler-Lagrange equation with respect to u), we replace ϕ by an extrapolation ϕ̃. This results in a
Jacobian (i.e., the Hessian of the energy functional (3)) that has a triangular block structure with
elliptic terms on the diagonal, which can be solved using Galerkin finite elements. This treatment is
shown in subsequent examples to be numerically robust. We are aware that the theoretical validity of
the extrapolation remains an open question, since we have not established regularity in time.

The formulation of the semi-linear problem then reads: Find U := {u, ϕ} ∈ V ×W such that

∇Eε(U)(Ψ) =
((

(1− κ)ϕ̃2 + κ
)
σ+(u), e(w)

)
+ (σ−(u), e(w))− (α− 1)(ϕ̃2p,div w)

+ (1− κ)(ϕ σ+(u) : e(u), ψ)− 2(α− 1)(ϕ p div u, ψ)

+Gc

(
−1

ε
(1− ϕ,ψ) + ε(∇ϕ,∇ψ)

)
= 0 ∀Ψ := {w, ψ} ∈ V ×W.

(16)

The corresponding Jacobian is built by computing the directional derivative A′(U)(δU,Ψ). Then,
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δU := {δu, δϕ} ∈ V ×W such that

∇2Eε(U)(δU,Ψ) =
((

(1− κ)ϕ̃2 + κ
)
σ+(δu), e(w)

)
+ (σ−(δu), e(w))

+ (1− κ)(δϕσ+(u) : e(u) + 2ϕ σ+(δu) : e(u), ψ)

− 2(α− 1)p(δϕdiv u + ϕ div δu, ψ)

+Gc

(1

ε
(δϕ, ψ) + ε(∇δϕ,∇ψ)

)
= 0 ∀Ψ := {w, ψ} ∈ V ×W.

(17)

In σ+(δu) and σ−(δu) we employ the derivative of e+, which is given by

e+(δu) = P (δu)Λ+P T + PΛ+(δu)P T + PΛ+P T (δu).

3.6 Spatial discretization and block structure of the Euler-Lagrange linear equation
system

In this section, we consider the structure and solution of the linear discrete system (15) arising in each
Newton step. For spatial discretization, we use the previously introduced spaces Vh×Wh with vector
valued basis

{ψi |i = 1, . . . , N},

where the basis functions are primitive (they are only non-zero in one component), so we can separate
them into displacement and phase-field basis functions and sort them accordingly:

ψi =

(
χui
0

)
, for i = 1, . . . , Nu,

ψ(Nu+i) =

(
0
χϕi

)
, for i = 1, . . . , Nϕ,

where Nu +Nϕ = N . This is now used to transform (15) into a system of the form

Mx = F, (18)

where M is a block matrix (the Jacobian) and F the right hand side consisting of the residuals. The
block structure is

M =

(
Muu Muϕ

Mϕu Mϕϕ

)
, F =

(
F u

Fϕ

)
,

with entries coming from (17):

Muu
i,j =

((
(1− κ)ϕ̃2 + κ

)
σ+(χuj ), e(χui )

)
+ (σ−(χuj ), e(χui )),

Mϕu
i,j = 2(1− κ)(ϕ σ+(χuj ) : e(u), χϕi )− 2(α− 1)p(ϕ div(χuj ), χϕi ),

Muϕ
i,j = 0,

Mϕϕ
i,j = (1− κ)(σ+(u) : e(u)χϕj , χ

ϕ
i )− 2(α− 1)p(div(u)χϕj , χ

ϕ
i )

+Gc

(1

ε
(χϕj , χ

ϕ
i ) + ε(∇χϕj ,∇χ

ϕ
i )
)
.
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The right hand side consists of the corresponding residuals (see semi-linear form (16)). In particular,
we have

F ui = −Ã(Uk)(χ
u
i )

=
((

(1− κ)ϕ̃2
k + κ

)
σ+(uk), e(χ

u
i )
)

+ (σ−(uk), e(χ
u
i ))− (α− 1)(ϕ̃2

kp,div χui ),

Fϕi = −Ã(Uk)(χ
ϕ
i ) = (1− κ)(ϕk σ

+(uk) : e(uk), χ
ϕ
i )− 2(α− 1)(ϕk p div uk, χ

ϕ
i )

+Gc

(
−1

ε
(1− ϕk, χϕi ) + ε(∇ϕk,∇χϕi )

)
.

In the matrix, the degrees of freedom that belong to Dirichlet conditions (here only displacements
since we assume Neumann conditions for the phase-field) are strongly enforced by replacing the cor-
responding rows and columns as usual in a finite element code. In a similar fashion, the rows and
columns that belong to nodes of the active set are removed from the matrix. Corresponding right
hand side values in the vector F are set to zero. This is exactly Step 4 in Algorithm 3.2. The linear
system (18) is solved with appropriate solvers in Trilinos [30].

Remark 3.7. Since we replaced ϕ2 by ϕ̃2 the block Muϕ
i,j is zero and the Jacobian G has triangular

structure. In the other case, all blocks would be nonzero.

4 A predictor-corrector scheme for mesh adaptivity

This second key section is concerned with local mesh adaptivity. Phase-field approaches require
fine meshes around the interface (here, the fracture) in order to provide solutions of sufficient accu-
racy. There are several studies that have been investigated anisotropies introduced by the mesh [31],
anisotropic adaptive mesh refinement [7], and prerefined meshes when the crack path is known a priori
[6]. Here, we are interested in a general treatment in which no a priori information of the crack path
is required.

4.1 Properties of the algorithm

The algorithm asks for the following properties:

• Keep a single fixed, small ε during the entire computation. Decreasing ε (locally) during
the computation will not allow for an increase in accuracy of the solution. While reducing ε
would result in a thinner crack mushy zone, the irreversibility constraint would not allow for
this to happen. As a consequence, ε should not be changed during the computation.

Note that it would be possible to increase ε locally in order to allow the mesh to be locally
coarsened in order to reduce computational effort; this study was not investigated in this paper.
However, locally varying ε would result in a changing crack mushy zone, which is undesirable.

• Ensure h < ε inside crack region. It is required to have a sufficiently small mesh size h to
resolve the transition of the phase field variable. The width of this zone is controlled by the
choice of ε. Importantly, the ε-h relationship is only required to be satisfied inside or directly
around the current crack region and not in the whole computational domain.

• Error is controlled by ε, not h.

In contrast to standard a-posteriori or goal oriented adaptive mesh refinement, just refining
the mesh does not reduce the discretization error significantly. This is because the choice of ε
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determines the width of the mushy zone around the crack path. Ideally, an adaptive method
would try to minimize ε and pick an appropriate h to minimize the discretization error introduced
by the mesh size.

• No requirement of prior knowledge about crack location(s). Typically, especially for
more realistic problems, the final location of the cracks is unknown. While it is an option to
repeat the whole computation on a finer mesh that is determined using the first computation, this
is too expensive to be practical. Therefore, the algorithm should detect during the computation
in which direction the cracks are growing.

• Handling fast growing cracks. Only adapting the mesh based on the current crack location
before moving on to the next time step may result that the adaptive mesh lags behind in time
and does not resolve the crack region adequately, especially if the crack is growing rapidly.

Our proposed algorithm works as follows: We first pick a single, small ε, and then decide on an
adaptive refinement level r for the crack region that ensures h < ε. We then refine the mesh adaptively
during the computation so that it is on level r in the crack region. To handle fast growing cracks with
a priori unknown paths, we employ a predictor-corrector scheme that keeps repeating the current time
step to guarantee the finest mesh level r in the crack region.

Figure 1: Predictor-corrector scheme: 1. advance in time, crack leaves fine mesh. 2. refine and go
back in time (interpolate old solution). 3. advance in time on new mesh. Repeat until mesh
doesn’t change anymore. Refinement is triggered for ϕ < C = 0.2 (green contour line) here.
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4.2 The algorithm in a single time step

Let the solution to time step tn be given; Figure 1 top left. The full problem is solved with a prediction
of the new crack path at time step tn+1; Figure 1 top right. If the crack is not resolved adequately, we
employ a predictor-corrector cycle: First, we refine the mesh based on the new solution and interpolate
the old solution (at tn) onto the new mesh (Figure 1, bottom left). The refinement is done using a
chosen threshold 0 < C < 1 (C = 1 corresponds to global mesh refinement) for the phase-field ϕ. Each
cell that has at least one support point with value ϕ(xi) < C will be refined unless we are already
at the maximum desired refinement level r. Then we solve for the solution at tn+1 again, but on
the refined mesh (Figure 1, bottom right). This process is repeated until the mesh does not change
anymore.

The cycle always terminates in a finite number of steps because a fixed maximum refinement level is
chosen. In practice, predictor-corrector cycles only happen when the crack is rapidly growing and, at
least in our experiments, terminate after 1 to 3 cycles. As a result this guarantees {x : ϕ(x) < C} ⊂ Ω
is resolved with the maximum desired refinement level.

Of course, the price to pay is are additional systems to solve to predict the crack path but we
nevertheless obtain a highly efficient method since it allows us to grow the mesh (i.e., the degrees of
freedom) together with the crack.

4.3 The final predictor-corrector algorithm for local mesh adaptivity

In summary, our proposed predictor-corrector scheme - forcing the growing crack region to always be
resolved with a fine mesh - reads:

Algorithm 4.1. Choose a fixed refinement level r for the crack region. On level r, determine h
(r)
max

and pick an appropriate ε := ε(r) > h
(r)
max. Select a bound 0 < C < 1 for ϕ to be considered inside the

crack. For each time step do:

1. Solve for solution (un+1, ϕn+1) at tn+1.

2. If cells need to be refined (cell with level k < r has ϕn+1(x) < C):
refine and transfer solution from tn, goto 1.

Remark 4.1. The parameter ε needs to chosen relative to the largest cell size h that can appear on
level r during the computation. For refinement of a quadrilateral mesh this quantity can be computed
from the set of coarse cells T using

h(r)
max = max

T∈T
2−rhT

where hT is the size of cell T .

Remark 4.2. Another interpretation of this scheme is that we pick a-priori constant values ε and h for
the computation and then coarsen cells away from the crack region where the solution is smooth.

5 Numerical Tests

In this final section, we present several crack propagation scenarios in pure elasticity and pressurized
regimes. In all tests, the focus is on a robust and cost efficient solution to study convergence of certain
quantities of interest and features such as joining and branching of cracks. Specifically in Example
1, Sneddon’s [32] pressurized crack benchmark is considered. In the second subsection (Examples 2
and 3), we focus on well-known tests in elasticity in mechanical engineering; namely, the single edge
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notched tension and shear tests; and then furthermore in Example 4 on a very classical benchmark,
the so-called symmetric three point bending test. In the final tests (Examples 5 and 6), we treat two
growing pressurized fractures in homogeneous and heterogeneous elastic media.

5.1 Quantities of interest

In the first test, we consider the evaluation of the crack opening displacement (COD; also known as
aperture):

COD =

∫ 4

0
u(x0, y) · ∇ϕ(x0, y) dy, (19)

where ϕ is as before our phase-field function and x0 the x-coordinate of the integration line. The
analytical solution for the crack opening displacement derived by Sneddon and Lowengrub [32] is
given by:

COD = 2
pl0
E′
(
1− x2

l20

)1/2
= 3.84× 10−4

(
1− x2

l20

)1/2
,

where E′ = E
1−ν2 with p (applied pressure), and the half crack length l0. All concrete values are

specified below.

In the other tests, we compute load functionals over parts Γ of the boundary, i.e,

τ = (Fx, Fy) :=

∫
Γ
σ(u)n ds.

In addition, we compute the bulk energy EB given by

EB =

∫
Ω

([1− κ]ϕ2 + κ)ψ(e) dx, (20)

and crack energy

EC =
Gc
2

∫
Ω

((ϕ− 1)2

ε
+ ε|∇ϕ|2

)
dx, (21)

with the strain energy functional

ψ(e) := µtr(e(u)2) +
1

2
λtr(e(u))2,

the previously introduced symmetric strain tensor

e := e(u) :=
1

2
(∇u +∇uT ),

and |∇ϕ|2 := ∇ϕ : ∇ϕ.

5.2 Programming code

The programming software is based on deal.II [33, 34] and specifically on the adaptation and extension
of the template for solving fully-coupled multiphysics problems [35] combined with the implementation
of the primal-dual active set strategy from deal.II’s step-41 [36].
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5.3 2D Sneddon test with pressurized fracture (Example 1)

The first example is based on the theoretical calculations of [32, 37]. Specifically, we consider a 2D
problem in which all data are given in dimensionless form; where a (constant) pressure p = 10−3 is
used to drive the deformation and crack width evolution. The configuration is the same as explained
in [38] and illustrated in Figure 2. Therefore, we deal with the following geometric data: Ω = (0, 4)2

and a (prescribed) initial crack with length l0 = 0.4 on ΩC = (1.8 − h, 2.2 + h) × (2 − h, 2 − h) ⊂ Ω.
As boundary conditions, we set the displacements to zero on ∂Ω.

The fracture toughness is chosen as Gc = 1.0. The mechanical parameters are Young’s modulus and
Poisson’s ration E = 1.0 and νs = 0.2. The relationship to the Lamé coefficients µs and λs is given
by:

µs =
E

2(1 + νs)
, λs =

νsEs
(1 + νs)(1− 2νs)

.

The regularization parameters are chosen as ε = 2h and ε = 0.5h0.5; and κ = 10−10. This test case is
computed in a quasi-stationary manner: that is, we solve several pseudo-time steps until the residual
< TOL = 10−5 is reached. The goals of this test are to observe the crack opening displacement, and
in particular to show the crack tip approximation.

Our findings are summarized in Figure 3 where we show the crack opening displacement for a
sequence of locally refined meshes. In addition, observing the crack tips at 1.8 and 2.2 demonstrates
convergence towards Sneddon’s manufactured solution. We remark that the ε-h choice is of minor
importance in this example since in both computations similar crack opening values are obtained.

Figure 2: Example 1: crack location (in red) and magnitude (highest in red) of the displacements.
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Figure 3: Example 1: crack opening displacement for ε = 2h (left) and ε = 0.5h0.5 (right). In particular
we point the reader to the excellent approximation of the crack tips under spatial mesh
refinement.
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5.4 Single edge notched tension and shear tests (Examples 2 and 3)

In this example, we restrict our attention to pure elastic crack-propagation examples in order to
test our solver for cases with unstable and brutal crack growth. Specifically, we show that dynamic
crack-oriented mesh adaptivity drastically reduces the computational cost.

Similar settings have been experimentally studied and it is well known that under constant tension
the crack grows straight, while under constant shear forces the crack grows in a curve towards a corner.
Moreover, we point out that the crack irreversibility condition is redundant for Example 2 and we
obtain the same results as Miehe et al. [5] and Borden et al. [6].

The geometric and material properties are the same as used in [5]. The configuration is displayed
in Figure 4.

5mm

5mm

5mm5mm

5mm

5mm

5mm5mm

Figure 4: Example 2: Single edge notched tension test (Example 2; left) and shear test (Example 3;
right). In detail, the boundary conditions are for Example 2: uy = 0mm (homogeneous
Dirichlet) and traction free (homogeneous Neumann conditions) in x-direction on the bot-
tom. On the top boundary Γtop, we prescribe ux = 0mm and uy as provided in (22). All
other boundaries including the slit are traction free (homogeneous Neumann conditions).
For Example 3, we prescribe the following conditions: On the left and right boundaries,
uy = 0mm and traction-free in x-direction. On the bottom part, we use ux = uy = 0mm
and on Γtop, we prescribe uy = 0mm and ux as stated in (23). Finally, the lower part of the
slit is fixed in y-direction, i.e., uy = 0mm.

Specifically, we use µ = 80.77kN/mm2, λ = 121.15kN/mm2, and Gc = 2.7N/mm. The crack
growth is driven by a non-homogeneous Dirichlet condition for the displacement field on Γtop, the top
boundary of Ω . We increase the displacement on Γtop over time, namely we apply non-homogeneous
Dirichlet conditions:

uy = tū, ū = 1 mm/s (Example 2), (22)

ux = tū, ū = 1 mm/s (Example 3), (23)

where t denotes the total time. Furthermore, we set k = 10−10[mm] and ε = 2h[mm] for the first test.
For the second test the h-ε relation is provided below. We evaluate the surface load vector on the Γtop
as

τ = (Fx, Fy) :=

∫
Γtop

σ(u)n ds,
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with normal vector n, and we are particularly interested in Fy for Example 2 and Fx for Example
3. Our findings for the surface load evolution are provided in Figure 5 and the corresponding crack
patterns are displayed in Figure 6. Specifically, the approach is stable with respect to spatial mesh
refinement.
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Figure 5: Example 2: Single edge notched tension test. Left: we locally pre-refine the region where we
expect the crack to grow. On the right the mesh is dynamically refined using the phase-field
variable. Both approaches lead to identical results.

Figure 6: Example 2: Single edge notched tension test. Crack propagation in red and dynamic mesh
refinement at different times (going from top left to bottom right).
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Single edge notched shear test

In the single edge notched shear test, it is important to consider the correct boundary conditions and
the spectral decomposition of the strain energy e(u) into tensile e+(u) and compressive parts e−(u).
We refer to [4] for a detailed physical motivation. Moreover, this test is useful in addressing whether
the crack follows the mesh or vice versa. A motivation in studying this question is posed in [7]; in this
regard, we also refer the reader to Section 5.3 in [38] and to Section 5.5 below.

Our first aim, and most importantly, is to study h-refinement for fixed ε. These studies are performed
on different mesh levels 4+0 (with h = 0.044mm), 4+1 (with h = 0.022mm), 4+2 (with h = 0.011mm),
4 + 3 (with h = 0.0056mm), and 4 + 4 (with h = 0.0027mm). In a second set of studies, we vary
the loading step size δt. Thirdly, we consider model parameter refinements in ε linked to spatial
h refinement; namely h = o(ε). Here, we propose three scenarios Case 1: ε = 2h[mm], Case 2:
ε = ch0.5[mm], c = 0.25, and Case 3: ε = ch0.25[mm], c = 0.125. In comparison, the reference values
in [5] are obtained on an effective mesh size h = 0.002mm. Our reference load-displacements curves
were obtained by interpolation from computational results provided in [5] and [6].

We draw the following conclusions from our findings. In Figure 7, we fix h and study the convergence
for different ε. The influence of its choice is significantly larger on fine meshes. Consequently, this
test demonstrates that drawing any conclusions on coarse meshes might be redundant and fine meshes
must be studied.
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Figure 7: Example 3: Single edge notched shear test. Load-displacement curve on the coarsest 4 + 1
(left) and finest meshes 4 + 3 (right). Here, we compare convergence with respect to ε. The
more the Γ convergence requirement is fulfilled the better the convergence can be identified.
This becomes more visible on the finer meshes.

Next, we fix ε = 0.088mm(= 2h(4+0)) in Case 1 and refine h in order to study h convergence. Our
results are displayed in Figure 8 in which we clearly identify spatial convergence with respect to h.
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Figure 8: Example 3: Single edge notched shear test. Load-displacement curve (left) and bulk (BE)
and crack (CE) energies (right) for fixed ε = 0.088mm(= 2h(4+0)) and refinement in h.
Spatial convergence can be clearly observed.

In the next tests, h and ε are refined simultaneously. Case 1 shows poor spatial behavior for a fixed
time step size δt = 10−4s and is not reported here. Secondly, we compare a priori local refinement
and predictor-corrector refinement, which yield similar findings (see Figure 12). From these results,
we infer our proposed predictor-corrector refinement is correct. Furthermore, applying the theory of
Γ convergence; namely, cases 2 and 3, the loading curves are clustered together as shown in Figure
9. In fact, the better clustering is obtained for ε = chm with small m > 0 and m � 1. This is in
agreement with the theoretical assertions of Γ-convergence telling us that h = o(ε).
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Figure 9: Example 3: Single edge notched shear test. Load-displacement curve for the Case 2 (left) and
Case 3 (right). We observe that if we choose h and ε according to the theoretical requirement
of Γ convergence with h = o(ε), then clustering of the load-displacements curves can be seen.
We notice that this test using Case 1 leads to poor convergence.

Our findings in Figure 10 show the evolution of bulk (20) and crack energies (21) for Case 1 and
Case 3. The results illustrate the expected behavior: As long as the crack does not grow (up to
t = 0.0095s), there is only an increase in bulk energy. Once the crack starts growing, bulk energy is
dissipated into crack energy.
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Figure 10: Example 2: Single edge notched shear test. Comparison of bulk (left) and crack (right)
energies for Case 3. Once crack propagation starts, the bulk energy decreases and crack
energy increases. In summary (like for the previously discussed load-displacement curves),
we observe that the energy approximation clearly depends on the choice of the h-ε-relation.

In the Figure 11, several tests studying the influence of the time step size choice are performed.
Here, we confirm our previous observations (and also the theory) that irrespectively of the time step
size, Case 1 shows poor spatial convergence; whereas in Case 3 spatial convergence is obtained for
both choices δt = 10−5s and δt = 10−6s.
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Figure 11: Example 2: Tests for Case 3 and smaller time steps δt = 10−6s (left). In contrast to Case
1, we clearly identify spatial convergence for both times step choices. At right, Case 3
on 4 + 3-refined meshes and convergence studies with respect to time. Fixing the spatial
mesh level, we observe time convergence for both choices ε = 2h as well as ε = ch0.25 with
c = 0.125.

Despite the fact that we have not established theoretically the time convergence, our computational
results demonstrate temporal convergence as observed in Figure 11. Here, three different time step
sizes on the finest spatial mesh level clearly demonstrate convergence in time.
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Figure 12: Example 3: Single edge notched shear test for 4+2-refined meshes. Crack propagation in red
and dynamic mesh refinement at different times T = 100s, 120s, 150s. Top row shows global
refinement, middle row local prerefinement, and in the last two rows predictor-corrector
refinement with C = 0.6 and C = 0.8 threshold, respectively.
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Figure 14: Example 3: Performance of the Newton solver. Left: example of the nonlinear residual
and elements in the active set converging at the same time for a particular time step.
Right: average number of Newton iterations divided into different parts: no crack growth
(t ≤ 85s), beginning of crack growth (86s ≤ t ≤ 95s), and crack growth (t > 95s).
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Figure 13: Example 3: Single edge notched shear test. Comparison of the mesh refinement effect
using predictor-corrector adaptivity with C = 0.6 and C = 0.8 and 4 + 2-refinement at the
final time step 150s. The refined region is more concentrated around the crack when using
C = 0.6.

Performance of the combined Newton solver with respect to h and ε and the active set constant
c

For the three different cases 1, 2, 3 we provide some details on the convergence of the merged Newton
solver on the finest mesh level 4 + 4. We observe that the performance of the Newton solver slightly
depends on the h-ε choice and becomes inferior for choices that result in more accurate solutions.
See Figure 14. In other experiments, we see very little dependency on the choice of the active set
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parameter c, which might be a property of the combined Newton method.

Computational cost

We now describe our findings regarding the computational cost using the single edge notched shear
test (Example 3). The tests are run on a Intel(R) Core(TM) i5-3320M CPU @ 2.60GHz machine. We
use a four-times globally refined mesh as a basic mesh. Here, we compare global refinement (leading
to a six times globally refined mesh), prerefined local mesh refinement in which the mesh is refined in
the bottom left quadrant of the domain, and our predictor-corrector scheme. The prerefinement has a
reasonable refinement area since the crack has a curved path and we do not know where it will grow in
this region. The mesh with a growing number of unknowns for the predictor-corrector scheme can be
seen in Figure 12. Here, we use the 0.6 and 0.8 as respective thresholds for mesh refinement. In Figure
15, we display the wall clock time and the corresponding evolution of the degrees of freedom for these
four test cases. The average number of degrees of freedom is about one half using predictor-corrector
adaptivity compared to prerefined local mesh refinement; and about one fourth as compared to global
mesh refinement. All refinement techniques show an increase in computing time around time step 95
when the crack starts to grow. At time step 126 the crack reaches its final state as observed in Figure
12 (bottom right). In the test with 0.6 threshold, the mesh was changed 32 times, which means that
we had to solve 32 additional systems. In the test with 0.8 threshold, the mesh was changed 42 times.
This is reasonable since 0.8 marks more cells in a larger region around the crack. These additional
solves however still kept the average computing time much below the locally pre-refined configuration.
The computational time, number of steps, and corresponding degrees of freedom are provided in Table
1; and showing the computational savings using predictor-corrector adaptivity.
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Figure 15: Example 3: Single edge notched shear test on 4+2-refined meshes. Comparison of computa-
tional cost in terms of the wall clock time (left) and corresponding evolution of the degrees of
freedom. The wall clock time is measured for each time step. Using the predictor-corrector
scheme it summarizes all states in which the mesh might be refined and consequently one
time step includes possible solution of more than one system solve. The right figure displays
that the total number of increases while the crack growths. Even in the final steps, when
the crack reaches the boundary (see Figure 12), the number of DoFs is much smaller in the
adaptive approach.
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Table 1: Example 3: Comparison of computational cost for different refinement strategies.

Time/s Number of steps DoFs: min/avg/max

global refinement 5036 151 50115
local prerefinement 1277 151 19746
predictor/corrector (0.8) 233 151+63 3315/4731/8286
predictor/corrector (0.6) 184 151+53 3315/4225/6666

5.5 Symmetric three point bending (Example 4)

This example is a classical benchmark in mechanical engineering. Related studies have been carried
out in [39] and by the same authors with a phase-field method [4, 5]. Other important results of
related settings have been reported in [40]. Here, we have two goals in mind:

• further application of our predictor-corrector mesh adaptivity scheme in order to perform mesh
sensitivity studies by disturbing the mesh, while observing the crack path and functional values;

• as in the previously examples studies with respect to h and ε;

The geometric, material properties and loading conditions are the same as used in [5, 39, 40]. The
configuration is displayed in Figure 16.

4mm 4mm

2mm

0.2mm

0.4mm

g

Figure 16: Example 4: Configuration of the symmetric three point bending test. A time dependent
Dirichlet force uy acts on Γtop only in the middle, i.e., g in the point (4mm, 2mm) on Γtop
(the origin being in the left corner on the bottom). In the two bottom corners, the specimen
is fixed only by uy = 0mm and traction-free in x-direction. To fix rigid body motions, we
also clamp one pin in x-direction, ux = 0. All remaining boundary parts are traction-free,
i.e., homogeneous Neumann conditions.
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The material parameters are λ = 12kN/mm2, µ = 8kN/mm2 and Gc = 2.5 × 10−4kN/mm2.
We increase the displacement g in (4mm, 2mm) on Γtop over time, namely we apply again a non-
homogeneous Dirichlet:

g = tū, ū = 1 mm/s (24)

where t denotes the total time. The time step size is chosen as 10−3s in the first 35 steps and
afterwards 10−5s due to brutal and unstable crack growth. The load Fy := σ · n is measured along
the top boundary.

As previously mentioned, our main goal in this test are mesh sensitivity studies. Here, two initial
meshes symm with 312 cells and non− symm with 632 cells differ in their number of initial cells and
their symmetry. The non − symm mesh is highly distorted in order to study independence of crack
growth with respect to the geometry and mesh. In addition, we finally disturb the initial symmetric
mesh symm by 30% obtaining symm − dist in order to make another comparison with disturbed
meshes.

We first observe that the crack path is not affected and the growth and its path is insensitive of the
mesh, which is demonstrated in the Figures 19 - 23. Moreover, we also see that using the different
initial, non-symmetric mesh non−symm, the load-displacement curves are of similar order as observed
in the Figures 17 and 18. Most importantly, crack growth starts independently at exactly the same
time instance t = 0.036s in all tests.
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Figure 17: Example 4: symmetric three point bending test - comparison of symm and non − symm
meshes for fixed ε = 2hcoarsemin and h-refinement (left figure). The functional values slightly
differ, which is due to the different numbers of cells due to different initially generated
meshes. In the right figure, ε depends on h by ε = 2hmin. The starting point of crack growth
is the same for all parameter choices. However, we refrain from speaking of ‘convergence’
in the case of ε-refinement (in the right figure) since convergence of the functional curves
for t ≤ 0.036s is not yet completely satisfied.
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Figure 18: Example 4: symmetric three point bending test. The initial symm mesh is disturbed
by 30% and h-convergence is studied with respect to fixed ε = 2hmin = 0.2. At right,
the three meshes are compared for a specific choice on the finest mesh 1 + 3 and fixed ε.
Again, the starting point of crack growth is for all meshes the same. The slight difference
in the functional curves stems from a different number of mesh cells using the symm
or non − symm meshes. This is confirmed by the fact that the second distorted mesh
symm−dist (obtained from symm, and consequently the same number of mesh cells) does
not show any discrepancy in the functional curves.

Figure 19: Example 4: Symmetric three point bending test using the symm mesh: snapshots at
different times t = 0s, 0.035s, 0.03604s, 0.037s.

Figure 20: Example 4: Symmetric three point bending test using the non − symm mesh: snapshots
at different times t = 0s, 0.035s, 0.03604s, 0.037s.
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Figure 21: Example 4: Symmetric three point bending test using the symm − dist mesh: snapshots
at different times t = 0s, 0.035s, 0.03604s, 0.037s.

Figure 22: Example 4: Symmetric three point bending test contour plots of the crack surfaces showing
their symmetry while the mesh is non-symmetric (using the symm− dist mesh).
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Figure 23: Example 4: Symmetric three point bending test contour plots of the crack surfaces showing
their symmetry while the mesh is non-symmetric (using the non− symm mesh).

5.6 Multiple pressurized cracks (Examples 5 and 6)

In this example, we employ our predictor-corrector dynamic mesh adaptivity algorithm for propagating
pressurized fractures. We also demonstrate that branching and joining in heterogeneous media are
automatically captured by the phase-field method. Specifically, we consider two propagating fractures
that interact with each other.

We use the same initial domain as in Example 1. In Example 5, two parallel cracks in ΩC =
[1.6m, 2.4m]× [2.75m− h, 2.75m+ h] and ΩC = [1.6m, 2.4m]× [1.25m− h, 1.25m+ h] are prescribed.
In Example 6, a vertical crack on ΩC = [0.5m, 1.5m] × [3.0m − h, 3.0m + h] and a horizontal crack
on ΩC = [2.5m − h, 2.5m + h] × [0.8m, 1.5m] are initially given. The corresponding meshes are
first 4 times globally refined with 4 additional levels of predictor-corrector adaptive refinement. For
these additional refinements, the phase-field variable is used with the threshold 0.8. The time step is
k = 0.01s. The regularization parameters are chosen as κ = 10−10m and ε = 6h0.5

minm. In this test,
the crack propagates due to a pressure that increases linearly in time:

p(t) = t · 103[Pa].

The material parameters for Example 5 are E = 104Pa and νs = 0.2 and for the second heterogeneous
Example 6 we choose E ∈ [1, 105]Pa; and νs = 0.2 as before.
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Our findings show that cost-efficient complex crack topologies can be computed with our proposed
approach. Specifically, we observe nonplanar crack growth with branching and joining of two fractures
in Example 6. In Figure 24 the initial and final meshes of Example 5 are displayed. The evolution of
the two cracks can be observed in Figure 26 for a sequence of different time snapshots.

Figure 24: Example 5: Initial and final meshes at T = 0s and T = 30s.

Figure 25: Example 6: Initial and final meshes at T = 0s and T = 50s.
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Figure 26: Example 5: Two parallel propagating pressurized cracks at T = 0s, 10s, 15s, 20s, 25s, 30s.
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Figure 27: Example 6: Two propagating pressurized cracks at T = 0s, 30s, 35s, 40s, 50s and the E-
modulus used in the computation. Here, both fractures grow nonplanar, then they join,
and finally the crack branches in the top right corner.
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The results of Example 6 are shown in the Figures 25 and 27. Here, the cracks first grow nonpla-
narly, join, and then grow towards the boundary before the crack branches again, which highlights
the capabilities of the phase-field method. We note that the physical behavior is dependent on the
boundary conditions and might change for other configurations. Finally, the bulk and crack energies
are provided in Figure 28. As before, the crack energy increases when the cracks starts growing. In
contrast to the previous examples, the bulk energy is still increasing since we keep increasing the
pressure.
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Figure 28: Examples 5 and 6: Comparison of bulk and crack energies.

6 Conclusions

In this work, we formulated a primal-dual active set method with predictor-corrector mesh adaptivity
for solving fracture problems with a phase-field method. Our results demonstrate that the approach is
computationally robust, efficient, and accurate. We include investigations between the regularization
parameter ε, the mesh size parameter h, and the time step size δt to study both spatial and temporal
convergence. Moreover, we investigated computational cost and time, and the performance of Newton’s
method with respect to these different parameters. In addition, studies showing insensitivity of crack
growth with respect to the mesh structure have been performed. All studies have been computed
using acknowledged benchmark tests such as Sneddon’s test for pressurized fractures as well as shear
tests and three point bending tests in elasticity.
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Appendix 1: Strain split into tension and compression

The decomposition of the strain energy (i.e., of the resulting stress tensors) is based on a spectral
decomposition into the principal components of the strain tensor into positive and negative compo-
nents, which are then used to build the stress tensor. We recapitulate: A spectral decomposition of
the strain tensor is given by:

e(u) = MΛMT

where M = (v1, v2) is build by the orthonormal eigenvectors of e(u) and Λ = diag(λ1, λ2), where
λi := λi(u), denote the principal strains and vi := vi(u) the corresponding eigenvectors. Define

e+(u) = MΛ+MT , and e−(u) = MΛ−MT

with

Λ+ = diag(〈λ1〉, 〈λ2〉)

with 〈λ〉 = max(λ, 0). Moreover, Λ− = Λ− Λ−.

Working in two dimensions, allows for the following explicit calculation of the eigenvalues and
eigenvectors:

λ1(u) =
tr(e)

2
+

√
tr(e)2

4
− det(e),

λ2(u) =
tr(e)

2
−
√

tr(e)2

4
− det(e).

For a symmetric tensor as it is the case for e, the eigenvectors are already orthogonal. It remains to
orthonormalize them. We obtain:

v1(u) =
1√

1 +
(
λ1−e11
e12

)2

(
1

λ1−e11
e12

)
,

v2(u) =
1√

1 +
(
λ2−e11
e12

)2

(
1

λ2−e11
e12

)
. (25)

Remark 6.1 (Strain energy decomposition in 3d). Borden et al. [41] provide some useful hints on the
calculation of the strain energy decomposition in three dimensions.

Appendix 2: Derivation of the derivatives

We would like to identify optimal convergence properties of our Newton method and derive exact
expressions for the directional derivatives of
σ+(δu), σ−(δu), e+(δu), Λ+(δu) and P (δu). The key variables to build these derivatives are the
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eigenvalues and their eigenvectors:

λ′1(u)(δu) =
tr(e(δu))

2
+

1

2

√
tr(e)2

4 − det(e)
(e12(δu)e21 + e12e21(δu)+

(e11 − e22)(e11(δu)− e22(δu))

2

)
,

λ′2(u)(δu) =
tr(e(δu))

2
− 1

2

√
tr(e)2

4 − det(e)
(e12(δu)e21 + e12e21(δu)+

(e11 − e22)(e11(δu)− e22(δu))

2

)
,

For the eigenvectors, we differentiate (25) using the product rule, chain rule and quotient rule. Define:

‖v1‖ :=

√
1 +

(
λ1 − e11

e12

)2

,

and

‖v2‖ :=

√
1 +

(
λ2 − e11

e12

)2

,

Then, using the product rule:

v′1(u)(δu) =

(
1

‖v1‖

(
1

λ1−e11
e12

))′
(δu)

=

(
1

‖v1‖

)′
(δu)

(
1

λ1−e11
e12

)
+

1

‖v1‖

((
1

λ1−e11
e12

))′
(δu),

where

(
1

‖v1‖

)′
(δu) =

− 1

1 +
(
λ1−e11
e12

)2

1

2

√(
λ1−e11
e12

)2

2
λ1 − e11

e12

(λ1(δu)− e11(δu))e12 − (λ1 − e11)e12(δu)

e2
12

)

Analogously for
(

1
‖v2‖

)′
(δu). It remains to differentiate the second part

((
1

λ1−e11
e12

))′
(δu). Here, we

obtain with the quotient rule:((
1

λ1−e11
e12

))′
(δu) =

(
0

(λ1(δu)−e11(δu))e12−(λ1−e11)e12(δu)
e212

)
.

Now, we insert these derivatives into their defining tenors.
Finally we emphasize that the positive parts < · >, e+ and Λ+ are taken with respect to the right

hand side. Specifically, for the entries in the Jacobian, we check if the corresponding right hand side
value is non-negative. This ensures that each non-negative component of the right hand side has a
corresponding (possibly negative) matrix entry.
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