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Abstract

We propose, analyze, and test a new MHD discretization which decouples the system into
two Oseen problems at each timestep yet maintains unconditional stability with respect to the
time step size, is optimally accurate in space, and behaves like second order in time in practice.
The proposed method chooses a parameter θ ∈ [0, 1], dependent on the viscosity ν and magnetic
diffusivity νm, so that the explicit treatment of certain viscous terms does not cause instabilities,
and gives temporal accuracy O(∆t2 + (1− θ)|ν − νm|∆t). In practice, ν and νm are small, and
so the method behaves like second order. When θ = 1, the method reduces to a linearized
BDF2 method, but it has been proven by Li and Trenchea that such a method is stable only
in the uncommon case of 1

2 < ν
νm

< 2. For the proposed method, stability and convergence
are rigorously proven for appropriately chosen θ, and several numerical tests are provided that
confirm the theory and show the method provides excellent accuracy in cases where usual BDF2
is unstable.

1 Introduction

Recent advances in algorithms, large scale computing, and understanding of fluid flow phenom-
ena has made it possible to consider the simulation of multiphysics flow problems which couple
the Navier-Stokes equations (NSE) to conservation laws and constitutive equations for additional
physical phenomena. Our interest herein is with magnetohydrodynamic (MHD) flow, which is im-
portant in various applications including astrophysics and geophysics [21, 28, 15, 12, 4, 7], liquid
metal cooling in nuclear reactors [3, 18, 30], and process metallurgy [10]. The MHD system of
equations is created by nonlinearly coupling the NSE to Maxwell’s equation for magnetic fields,
and is given in a convex domain Ω by [24, 6, 11]

ut + (u · ∇)u− s(B · ∇)B − ν∆u+∇p = f, (1.1)

∇ · u = 0, (1.2)

Bt + (u · ∇)B − (B · ∇)u− νm∆B +∇λ = ∇× g, (1.3)

∇ ·B = 0. (1.4)

Here, Ω is domain of the fluid, u is velocity, p is a modified pressure, f is body force, ∇ × g is a
forcing on the magnetic field B, s is the coupling number, T is the time period, ν is the kinematic
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viscosity and νm is the magnetic diffusivity. The conservation of linear momentum is enforced by
(1.1) and the conservation of mass by (1.2). Equation (1.3) represents the induction equation for
the magnetic field B, and is accompanied by the solenoidal constraint on the magnetic induction
as (1.4). Equation (1.4) ensures that there are no magnetic monopoles, which are hypothetical
elementary particles with an isolated magnetic north or south pole. The modified pressure p is
related to the fluid pressure, pf , via p = pf/ρ + B · B/2, where density is denoted by ρ. The
magnetic diffusivity νm is defined by νm:= Re−1

m =1/(µσ), where µ is the magnetic permeability of
free space and σ is the electric conductivity of the fluid. An important property that determines
the behavior of the MHD equation is the ratio between the viscous and magnetic diffusion rates,
the magnetic Prandtl number Prm = Rem/Re = ν/νm. This ratio is crucial for the stability of our
scheme, as it is used to determine a key parameter. The artificial magnetic pressure λ is a Lagrange
multiplier, introduced in the induction equation to enforce the divergence free constraint on the
magnetic induction equation within a variational context. In the continuous case, the magnetic
pressure vanishes.

Since the nonlinear system (1.1)-(1.4) typically requires a very large number of degrees of
freedom (dof) to resolve numerically, it is critical to split the system into smaller, more easily
solvable pieces to avoid having to solve very large, coupled nonsymmetric linear systems. Even
for the NSE alone, the development of fast, robust, linear solvers is very much an open research
problem, although some excellent strides forward have been recently made [5, 13, 23]. Thus solving
the coupled block linear systems that arise at each time step of an MHD simulation will generally
be computationally infeasible.

A breakthrough for efficient MHD algorithms was recently made by C. Trenchea in [31], where
he showed that if the MHD system is rewritten in Elsässer variables [14] instead of primitive
variables, then the MHD system can be decoupled in an unconditionally stable way into two Oseen
problems at every time step. This idea was further explored in [26], and shown to work very
well. To describe the method, we first recall the Elsässer variable reformulation of MHD: define
v =: u +

√
sB, w =: u −

√
sB, f1 := f +

√
s(∇ × g), f2 := f −

√
s(∇ × g), q := p +

√
sλ and

r := p−
√
sλ. This changes (1.1)-(1.4) to

vt + w · ∇v +∇q − ν + νm
2

∆v − ν − νm
2

∆w = f1, (1.5)

∇ · v = 0, (1.6)

wt + v · ∇w +∇r − ν + νm
2

∆w − ν − νm
2

∆v = f2, (1.7)

∇ · w = 0. (1.8)

The above system can be easily transformed to the case of B = B0 + b, where B0 is a known
uniform background magnetic field and b is fluctuations in it. For simplicity of analysis, however,
we will assume B0 = 0, since adding this term would not change the main ideas or results. We note
also that certain physical phenomena for MHD turbulence can be more easily described using the
Elsässer formulation [9], and that the velocity u and magnetic field B are easily recoverable from
simulations using Elsässer variables.

The decoupled and unconditionally stable first order timestepping method of Trenchea has the
form
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First order decoupled method of Trenchea [31]:

1

∆t
(vn+1 − vn) + wn · ∇vn+1 +∇qn+1 − ν + νm

2
∆vn+1 − ν − νm

2
∆wn = fn+1

1 ,

∇ · vn+1 = 0,
1

∆t
(wn+1 − wn) + vn · ∇wn+1 +∇rn+1 − ν + νm

2
∆wn+1 − ν − νm

2
∆vn = fn+1

2 ,

∇ · wn+1 = 0.

Although a successful breakthrough idea, a drawback to the scheme is that it is limited to first
order temporal accuracy. In a followup work, Li and Trenchea studied the following second order
extension:

Second order decoupled method of Li and Trenchea [25]:

1

2∆t
(3vn+1 − 4vn + vn−1) + (2wn − wn−1) · ∇vn+1 +∇qn+1

−ν + νm
2

∆vn+1 − ν − νm
2

∆(2wn − wn−1) = fn+1
1 ,

∇ · vn+1 = 0,
1

2∆t
(3wn+1 − 4wn + wn−1) + (2vn − vn−1) · ∇wn+1 +∇rn+1

−ν + νm
2

∆wn+1 − ν − νm
2

∆(2vn − vn−1) = fn+1
2 ,

∇ · wn+1 = 0,

and found it was unconditionally stable only under the restriction 1
2 < Prm = v

vm
< 2. In [1]

this bound was shown to be sharp, and thus there is a serious restriction on its applicability in
practice for many problems. For example current estimates suggest Prm ∼ 10−5 in the Earth’s core
(Re ∼ 108, Rem ∼ 103, see [22, 27]). We prove herein (in the appendix) that the above second order
method can be stable without the restriction on Prm = ν

νm
, if a timestep restriction of ∆t < O(h2)

is satisfied. Note that this condition is also often not practical.
The purpose of this paper is to propose and study a decoupled, unconditionally stable and

higher order accurate scheme that has no restriction on ν and νm. By careful consideration of the
analysis in [25, 31], we identify the ‘problem terms’ that lead to the restriction are the (ν − νm)
terms. In the first order case, these can be handled, but in the second order case, a restriction on
the data becomes necessary. Thus, we propose a method that treats the (ν − νm) terms as a lin-
ear combination (i.e. a θ-method) of the first and second order schemes above, which takes the form
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Proposed decoupled θ-method:

1

2∆t
(3vn+1 − 4vn + vn−1) + (2wn − wn−1) · ∇vn+1 +∇qn+1

−ν + νm
2

∆vn+1 − θν − νm
2

∆(2wn − wn−1)− (1− θ)ν − νm
2

∆wn = fn+1
1 ,

∇ · vn+1 = 0,
1

2∆t
(3wn+1 − 4wn + wn−1) + (2vn − vn−1) · ∇wn+1 +∇rn+1

−ν + νm
2

∆wn+1 − θν − νm
2

∆(2vn − vn−1)− (1− θ)ν − νm
2

∆vn = fn+1
2 ,

∇ · wn+1 = 0,

For this method, we prove unconditional stability of the method for any ν and νm, provided θ is
chosen to satisfy θ

1+θ <
ν
νm

< 1+θ
θ , 0 ≤ θ ≤ 1. This can be achieved for any ν

νm
, because the

bounds tend towards negative and positive infinity for θ going to zero. We also prove this scheme
has temporal accuracy O(∆t2 + (1− θ)|ν − νm|∆t). Even though the method is not second order
unless θ = 1 (the case where the BDF2 scheme is stable), in practice ν and νm are typically small,
and thus the method will typically behave like a second order method. To return to the example
of Earth’s core, there |ν − νm| is in the order of 10−3. We also note that the two decoupled Oseen
problems can be solved independently, allowing for a parallel solution approach if desired.

We study the new decoupled θ-method in a fully discrete setting, using a finite element spa-
tial discretization. After providing some necessary notation and mathematical preliminaries in
Section 2, we prove the proposed scheme is unconditionally stable (with correct choice of θ), well-
posed, optimally accurate in space, and with temporal accuracy O(∆t2 +(1−θ)|ν−νm|∆t), without
any restrictions on ν and νm (see Section 3). The proposed method is the only unconditionally
stable, decoupled method for MHD with general ν and νm that is better than first order accurate
in time, and thus could represent a potentially significant step forward for MHD flow simulations.
In Section 4 we perform several numerical experiments that both validate the theory and show the
method is very effective on some benchmark problems where the full second order method of [25]
is unstable.

2 Notation and Preliminaries

Throughout this paper, we assume that Ω ⊂ Rd, d ∈ 2, 3, is a convex polygonal or polyhedral
domain with boundary ∂Ω. We denote the usual L2(Ω) norm and its inner product by ‖ · ‖ and
(·, ·) respectively. All other norms will be clearly labeled.

For X being a normed function space in Ω, Lp(0, t;X) is the space of all functions defined on
(0, t)× Ω for which the norm

‖u‖Lp(0,t;X) =

(∫ t

0
‖u‖pX dx

)1/p

, p ∈ [1,∞)

is finite. For p =∞, the usual modification is used in the definition of this space.
The natural function spaces for our problem are

X := H1
0 (Ω)d = {v ∈ (L2(Ω))d : ∇v ∈ L2(Ω)d×d, v = 0 on ∂Ω},
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Q := L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω
q dx = 0}.

The results of this paper also hold in the periodic setting.
The Poincaré-Friedrichs’ inequality will be used frequently throughout our analysis: For v ∈ X,

‖v‖ ≤ C‖∇v‖, C = C(Ω).

The space of divergence free functions in X is given by

V := {v ∈ X : (∇ · v, q) = 0, ∀q ∈ Q}.

For f an element in the dual space of X, its norm is defined by

‖f‖−1 := sup
v∈X

‖(f, v)‖
‖∇v‖

.

We define the trilinear form b∗ : X ×X ×X → R by

b∗(u, v, w) :=
1

2
((u · ∇v, w)− (u · ∇w, v)).

Note that b∗(u, v, w) is skew symmetric, b∗(u, v, v) = 0, and if ‖∇ · u‖ = 0, then (u · ∇v, w) =
b∗(u, v, w). Also, b∗(u, v, w) satisfies the following bound [16]:

|b∗(u, v, w)| ≤ C(Ω)‖∇u‖‖∇v‖‖∇w‖, for any u, v, w ∈ X. (2.1)

2.1 Discrete setting

We will assume conforming finite element spaces Xh ⊂ X and Qh ⊂ Q which are LBB stable in
the sense of

inf
qh∈Qh

sup
vh∈Xh

(qh,∇ · vh)

‖qh‖‖∇vh‖
≥ β > 0, (2.2)

where β is independent of h.
For simplicity of analysis, we will further assume that Scott-Vogelius elements are used, i.e.,

(Xh, Qh) = ((Pk)
d, P disck−1 ) with appropriate macro-element structures so that LBB holds [2, 33, 29,

34]. The analysis can easily be extended to any LBB stable pair, e.g. Taylor-Hood elements, with
similar analytical results. However, strong enforcement of the ∇·B = 0 constraint is well known to
be critical in MHD simulations and thus it seems reasonable to assume the elements used strongly
enforce this constraint.

The space of discretely divergence free functions is defined as

Vh := {vh ∈ Xh : (∇ · vh, qh) = 0, ∀ qh ∈ Qh}.

We will formulate our equations in Vh formulation, and due to the LBB condition, this will be
equivalent to the (Xh, Qh) formulation. As is commonly done, we analyze with the Vh formulation
and compute with the (Xh, Qh) form.
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With the use of Scott-Vogelius finite element pairs, Vh is conforming to V , i.e., Vh ⊂ V and the
functions in Vh are divergence-free point wise in the L2 sense:

Vh = {vh ∈ Xh, ‖∇ · vh‖ = 0}.

We have the following approximation properties in (Xh, Qh): [8]

inf
vh∈Xh

‖u− vh‖ ≤ Chk+1|u|k+1, u ∈ Hk+1(Ω), (2.3)

inf
vh∈Xh

‖∇(u− vh)‖ ≤ Chk|u|k+1, u ∈ Hk+1(Ω), (2.4)

inf
qh∈Qh

‖p− qh‖ ≤ Chk|p|k, p ∈ Hk(Ω), (2.5)

where | · |r denotes the Hr seminorm.
We will assume the mesh is sufficiently regular for the inverse inequality to hold, and with this

and the LBB assumption, we have approximation properties

‖∇(u− P Vh
L2 (u))‖ ≤ Chk|u|k+1, u ∈ Hk+1(Ω), (2.6)

inf
vh∈Vh

‖∇(u− vh)‖ ≤ Chk|u|k+1, u ∈ Hk+1(Ω), (2.7)

where P Vh
L2 (u) is the L2 projection of u into Vh.

The following lemma for the discrete Gronwall inequality was given in [20].

Lemma 2.1. Let ∆t, H, an, bn, cn, dn be non-negative numbers for n = 1, · · · ,M such that

aM + ∆t

M∑
n=1

bn ≤ ∆t

M−1∑
n=1

dnan + ∆t

M∑
n=1

cn +H for M ∈ N,

then for all ∆t > 0,

aM + ∆t
M∑
n=1

bn ≤ exp

(
∆t

M−1∑
n=1

dn

)(
∆t

M∑
n=1

cn +H

)
for M ∈ N.

3 An efficient and stable θ-scheme for MHD

We now present and analyze an efficient decoupled scheme for MHD. After defining the scheme,
we analyze its stability and convergence. The scheme is a generalization of a linearized BDF2
scheme applied to the Elsässer MHD system, and differs in the treatment of the ν−νm

2 terms. As is
common with BDF2 schemes, we need two initial conditions; if only one is known, then a linearized
backward Euler method (i.e. the first order method of Trenchea [31]) can be used on the first step
without affecting stability or accuracy.

Algorithm 3.1. Given ν and νm, choose θ sufficiently small so that θ
1+θ <

ν
νm

< 1+θ
θ , 0 ≤ θ ≤ 1.

Let f1, f2 ∈ L∞(0, T ;H−1(Ω)d), initial conditions v0, w0, v1, w1 ∈ Vh, time step ∆t > 0 and end
time T > 0 be given. Set M = T/∆t and for n = 1, · · · ,M − 1, compute:
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Find vn+1
h ∈ Vh satisfying, for all χh ∈ Vh,:(

3vn+1
h − 4vnh + vn−1

h

2∆t
, χh

)
+ b∗(2wnh − wn−1

h , vn+1
h , χh) +

ν + νm
2

(
∇vn+1

h ,∇χh
)

+
ν − νm

2

(
(1− θ)∇wnh + θ∇(2wnh − wn−1

h ),∇χh
)

= (f1(tn+1), χh), (3.1)

Find wn+1
h ∈ Vh satisfying, for all lh ∈ Vh:(

3wn+1
h − 4wnh + wn−1

h

2∆t
, lh

)
+ b∗(2vnh − vn−1

h , wn+1
h , lh) +

ν + νm
2

(
∇wn+1

h ,∇lh
)

+
ν − νm

2

(
(1− θ)∇vnh + θ∇(2vnh − vn−1

h ),∇lh
)

= (f2(tn+1), lh). (3.2)

Remark 3.1. The key to the efficiency of the scheme is that the equations (3.1) and (3.2) are
decoupled; in fact, they could be solved simultaneously if the computational resources are available.
We prove below the scheme maintains stability despite this decoupling, provided θ is chosen so that
θ

1+θ <
ν
νm

< 1+θ
θ , 0 ≤ θ ≤ 1.

Remark 3.2. Note that when θ = 1, the above scheme reduces to a linearized BDF2 scheme studied
by Li and Trenchea in [25]. However, in [25] it was proven that this case is unconditionally stable
when 1

2 <
ν
νm

< 2, and it was later verified in [1] that this bound is sharp. This lack of stability is
the motivation for the θ-scheme we propose above, since one cannot expect such a restriction on ν
and νm in general.

3.1 Stability analysis

We now prove unconditional stability and well-posedness for the Algorithm 3.1. To simplify no-
tation, denote α := ν + νm − |ν − νm|(1 + 2θ), and note that by the choice of θ, it holds that
α > 0.

Lemma 3.1. Solutions to Algorithm (3.1) are unconditionally stable: for any ∆t > 0,

‖vMh ‖2 + ‖2vMh − vM−1
h ‖2 + ‖wMh ‖2 + ‖2wMh − wM−1

h ‖2 + α∆t

M∑
n=2

(‖∇vnh‖2 + ‖∇wnh‖2)

≤ ‖v0
h‖2 + ‖w0

h‖2 + ‖2v1
h − v0

h‖2 + ‖2w1
h − w0

h‖2

+ (ν + νm)∆t(‖∇v1
h‖2 + ‖∇w1

h‖2 + 2‖∇v0
h‖2 + 2‖∇w0

h‖2)

+
4∆t

α

M∑
n=1

(‖f1(tn)‖2−1 + ‖f2(tn)‖2−1).

Remark 3.3. Since Algorithm 3.1 is linear at each timestep and finite dimensional, the stability
bound above is sufficient to provide well-posedness of the scheme. Uniqueness follows due to lin-
earity, since the bounds on the difference between two solutions follow exactly as for the stability
bound, but with a zero right hand side. Since the scheme is finite dimensional and linear at each
time step, uniqueness implies existence, and thus solutions to Algorithm 3.1 must exist uniquely.
That the unique solutions are bounded continuously by the data is given in the stability bound above.
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Proof. Choose χh = vn+1
h ∈ Vh and lh = wn+1

h ∈ Vh in (3.1)-(3.2). Then the trilinear terms vanish,
leaving

1

2∆t
(3vn+1

h − 4vnh + vn−1
h , vn+1

h ) +
ν + νm

2
‖∇vn+1

h ‖2 +
ν − νm

2
((1 + θ)∇wnh − θ∇wn−1

h ,∇vn+1
h )

= (f1(tn+1), vn+1
h )

and

1

2∆t
(3wn+1

h − 4wnh + wn−1
h , wn+1

h ) +
ν + νm

2
‖∇wn+1

h ‖2 +
ν − νm

2
((1 + θ)∇vnh − θ∇vn−1

h ,∇wn+1
h )

= (f2(tn+1), wn+1
h ).

Adding these equations and using the identity

(3a− 4b+ c, a) =
a2 + (2a− b)2

2
− b2 + (2b− c)2

2
+

(a− 2b+ c)2

2
, (3.3)

we obtain

1

4∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖2vn+1

h − vnh‖2 − ‖2vnh − vn−1
h ‖2 + ‖wn+1

h ‖2 − ‖wnh‖2 + ‖2wn+1
h − wnh‖2

−‖2wnh−wn−1
h ‖2+‖vn+1

h −2vnh+vn−1
h ‖2+‖wn+1

h −2wnh+wn−1
h ‖2

)
+
ν + νm

2

(
‖∇vn+1

h ‖2+‖∇wn+1
h ‖2

)
+
ν − νm

2
((1 + θ)∇wnh − θ∇wn−1

h ,∇vn+1
h ) +

ν − νm
2

((1 + θ)∇vnh − θ∇vn−1
h ,∇wn+1

h )

= (f1(tn+1), vn+1
h ) + (f2(tn+1), wn+1

h ). (3.4)

Applying Cauchy-Schwarz and Young’s inequalities to the (ν−νm) terms and dropping non-negative
terms from the left hand side provides the bound

1

4∆t

(
‖vn+1
h ‖2−‖vnh‖2+‖2vn+1

h −vnh‖2−‖2vnh−vn−1
h ‖2+‖wn+1

h ‖2−‖wnh‖2+‖2wn+1
h −wnh‖2−‖2wnh−wn−1

h ‖2
)

+
ν + νm

2

(
‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2

)
≤ |ν − νm|

4
(1 + θ)

(
‖∇wnh‖2 + ‖∇vn+1

h ‖2 + ‖∇vnh‖2 + ‖∇wn+1
h ‖2

)
+
|ν − νm|

4
θ
(
‖∇wn−1

h ‖2 + ‖∇vn+1
h ‖2 + ‖∇vn−1

h ‖2 + ‖∇wn+1
h ‖2

)
+ ‖f1(tn+1)‖−1‖∇vn+1

h ‖+ ‖f2(tn+1)‖−1‖∇wn+1
h ‖.

Next, we apply Young’s inequality using α with the forcing terms, rearrange, and noting that α > 0
by the assumed choice of θ,

1

4∆t

(
‖vn+1
h ‖2−‖vnh‖2+‖2vn+1

h −vnh‖2−‖2vnh−vn−1
h ‖2+‖wn+1

h ‖2−‖wnh‖2+‖2wn+1
h −wnh‖2−‖2wnh−wn−1

h ‖2
)

+
ν + νm

2

(
‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2

)
≤ |ν − νm|

4
(1 + θ)

(
‖∇wnh‖2 + ‖∇vnh‖2

)
+
|ν − νm|

4
θ
(
‖∇wn−1

h ‖2 + ‖∇vn−1
h ‖2

)
+
α+ |ν − νm|(1 + 2θ)

4

(
‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2

)
+

1

α

(
‖f1(tn+1)‖−1 + ‖f2(tn+1)‖−1

)
.
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Hiding terms on the left hand side, and adding and subtracting terms appropriately, we obtain

1

4∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖2vn+1

h − vnh‖2 − ‖2vnh − vn−1
h ‖2 + ‖wn+1

h ‖2 − ‖wnh‖2 + ‖2wn+1
h − wnh‖2

− ‖2wnh − wn−1
h ‖2

)
+
ν + νm

4

(
‖∇vn+1

h ‖2 − ‖∇vnh‖2 + ‖∇wn+1
h ‖2 − ‖∇wnh‖2

)
+
ν + νm − |ν − νm|(1 + θ)

4

(
‖∇vnh‖2 − ‖∇vn−1

h ‖2 + ‖∇wnh‖2 − ‖∇wn−1
h ‖2

)
+
ν + νm − |ν − νm|(1 + 2θ)

4
(‖∇vn−1

h ‖2 + ‖∇wn−1
h ‖2) ≤ 1

α

(
‖f1(tn+1)‖2−1 + ‖f2(tn+1)‖2−1

)
. (3.5)

Now multiplying both sides by 4∆t and summing over time steps n = 1, · · · ,M − 1, we get

‖vMh ‖2+‖2vMh −vM−1
h ‖2+‖wMh ‖2+‖2wMh −wM−1

h ‖2+α∆t
M∑
n=2

(‖∇vnh‖2+‖∇wnh‖2) ≤ ‖v0
h‖2+‖w0

h‖2

+ ‖2v1
h − v0

h‖2 + ‖2w1
h − w0

h‖2 + (ν + νm)∆t(‖∇v1
h‖2 + ‖∇w1

h‖2 + 2‖∇v0
h‖2 + 2‖∇w0

h‖2)

+
4∆t

α

M∑
n=1

(‖f1(tn)‖2−1 + ‖f2(tn)‖2−1), (3.6)

which finishes the proof.

3.2 Convergence

We now consider convergence of the proposed decoupled, unconditionally stable scheme. Since the
method departs from a second order framework when θ > 1, we do not expect a second order in
time result. However, we are able to prove the method is nearly second order in practice; that is,
in the typical case that ν and νm are small, the second order temporal error will be the dominant
source of temporal error. Spatial convergence is found to be optimal.

Theorem 3.1. For (v, w, p) satisfying (1.5)-(1.8) with regularity assumptions v, w ∈ L∞(0, T ;Hk+1(Ω)),
vt, wt, vtt, wtt ∈ L∞(0, T ;H1(Ω)), and vttt, wttt ∈ L∞(0, T ;L2(Ω)), then the solution (vh, wh) to the
Algorithm (3.1) converges unconditionally to the true solution: for any ∆t > 0,

‖v(T )− vMh ‖+ ‖w(T )− wMh ‖+ 2α∆t

M∑
n=2

(
‖∇(v(tn)− vnh)‖2 + ‖∇(w(tn)− wnh)‖2

) 1
2

≤ C
(
hk + (∆t)2 + (1− θ)|ν − νm|∆t

)
Proof. We start our proof by obtaining the error equations. At time level tn+1, the continuous
variational formulations of (1.5) and (1.8) can be written as(

3v(tn+1)− 4v(tn) + v(tn−1)

2∆t
, χh

)
+
ν + νm

2

(
∇v(tn+1),∇χh

)
+ b∗

(
w(tn+1)− 2w(tn) + w(tn−1), v(tn+1), χh

)
+ b∗

(
2w(tn)− w(tn−1), v(tn+1), χh

)
+
ν − νm

2

(
∇(w(tn+1)− (1 + θ)w(tn) + θw(tn−1)),∇χh

)
+
ν − νm

2

(
(1 + θ)∇w(tn)− θ∇w(tn−1),∇χh

)
= (f1(tn+1), χh)−

(
vt(t

n+1)− 3v(tn+1)− 4v(tn) + v(tn−1)

2∆t
, χh

)
, (3.7)
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and(
3w(tn+1)− 4w(tn) + w(tn−1)

2∆t
, lh

)
+
ν + νm

2

(
∇w(tn+1),∇lh

)
+ b ∗

(
v(tn+1)− 2v(tn) + v(tn−1), w(tn+1), lh

)
+ b∗

(
2v(tn)− v(tn−1), w(tn+1), lh

)
+
ν − νm

2

(
∇(v(tn+1)− (1 + θ)v(tn) + θv(tn−1)),∇lh

)
+
ν − νm

2

(
(1 + θ)∇v(tn)− θ∇v(tn−1),∇lh

)
= (f2(tn+1), lh)−

(
wt(t

n+1)− 3w(tn+1)− 4w(tn) + w(tn−1)

2∆t
, lh

)
, (3.8)

for all χh, lh ∈ Vh. Denote the errors by env := v(tn)− vnh and enw := w(tn)− wnh . Subtracting (3.1)
and (3.2) from (3.7) and (3.8) respectively, provides(

3en+1
v − 4env + en−1

v

2∆t
, χh

)
+
ν + νm

2

(
∇en+1

v ,∇χh
)

+
ν − νm

2

(
(1 + θ)∇enw − θ∇en−1

w ,∇χh
)

+ b∗(2enw − en−1
w , v(tn+1), χh) + b∗(2wnh − wn−1

h , en+1
v , χh) = −G1(t, v, w, χh), (3.9)

and(
3en+1
w − 4enw + en−1

w

2∆t
, lh

)
+
ν + νm

2

(
∇en+1

w ,∇lh
)

+
ν − νm

2

(
(1 + θ)∇env − θ∇en−1

v ,∇lh
)

+ b∗(2env − en−1
v · ∇w(tn+1), lh) + b∗(2vnh − vn−1

h , en+1
w , lh) = −G2(t, v, w, lh), (3.10)

where

G1(t, v, w, χh) :=
ν − νm

2

(
∇(w(tn+1)− (1 + θ)w(tn) + θw(tn−1)),∇χh

)
+ b∗

(
w(tn+1)− 2w(tn) + w(tn−1), v(tn+1), χh

)
+

(
vt(t

n+1)− 3v(tn+1)− 4v(tn) + v(tn−1)

2∆t
, χh

)
and

G2(t, v, w, lh) :=
ν − νm

2

(
∇(v(tn+1)− (1 + θ)v(tn) + θv(tn−1)),∇lh

)
+ b∗

(
v(tn+1)− 2v(tn) + v(tn−1), w(tn+1), lh

)
+

(
wt(t

n+1)− 3w(tn+1)− 4w(tn) + w(tn−1)

2∆t
, lh

)
.

Now we decompose the errors as

env := v(tn)− vnh = (v(tn)− ṽn)− (vnh − ṽn) := ηnv − φnh,
enw := w(tn)− wnh = (w(tn)− w̃n)− (wnh − w̃n) := ηnw − ψnh ,

where ṽn = PL
2

Vh
(v(tn)) ∈ Vh and w̃n = PL

2

Vh
(w(tn)) ∈ Vh are the L2 projections of v(tn) and w(tn)

into Vh respectively. Note that (ηnv , vh) = (ηnw, vh) = 0 ∀vh ∈ Vh. Rewriting, we have for χh,
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lh ∈ Vh(
3φn+1

h − 4φnh + φn−1
h

2∆t
, χh

)
+
ν + νm

2

(
∇φn+1

h ,∇χh
)

+
ν − νm

2

(
(1 + θ)∇ψnh − θ∇ψn−1

h ,∇χh
)

+b∗
(
2ψnh − ψn−1

h , v(tn+1), χh
)

+b∗(2wnh−wn−1
h , φn+1

h , χh) =
ν + νm

2

(
∇ηn+1

v ,∇χh
)

+G1(t, v, w, χh)

+
ν − νm

2

(
(1 + θ)∇ηnw − θ∇ηn−1

w ,∇χh
)
+b∗

(
2ηnw − ηn−1

w , v(tn+1), χh
)
+b∗

(
2wnh − wn−1

h , ηn+1
v , χh

)
,

(3.11)

and(
3ψn+1

h − 4ψnh + ψn−1
h

2∆t
, lh

)
+
ν + νm

2

(
∇ψn+1

h ,∇lh
)

+
ν − νm

2

(
(1 + θ)∇φnh − θ∇φn−1

h ,∇lh
)

+ b∗(2φnh − φn−1
h , w(tn+1), lh) + b∗(2vnh − vn−1

h , ψn+1
h , lh) =

ν + νm
2

(
∇ηn+1

w ,∇lh
)

+G2(t, v, w, lh)

+
ν − νm

2

(
(1 + θ)∇ηnv − θ∇ηn−1

v ,∇lh
)

+ b∗(2ηnv − ηn−1
v , w(tn+1), lh) + b∗(2vnh − vn−1

h , ηn+1
w , lh).

(3.12)

Choose χh = φn+1
h , lh = ψn+1

h and use the identity (3.3) in (3.11) and (3.12), to obtain

1

4∆t

(
‖φn+1

h ‖2−‖φnh‖2+‖2φn+1
h −φnh‖2−‖2φnh−φn−1

h ‖2+‖φn+1
h −2φnh+φn−1

h ‖2
)
+
ν + νm

2
‖∇φn+1

h ‖2

≤ (1 + θ)
|ν − νm|

2

{
|
(
∇ηnw,∇φn+1

h

)
|+ |(∇ψnh ,∇φn+1

h )|
}

+ θ
|ν − νm|

2

{
|
(
∇ηn−1

w ,∇φn+1
h

)
|

+ |(∇ψn−1
h ,∇φn+1

h )|
}

+
ν + νm

2
|
(
∇ηn+1

v ,∇φn+1
h

)
|+ |b∗

(
2ηnw − ηn−1

w , v(tn+1), φn+1
h

)
|

+ |b∗
(
2wnh − wn−1

h , ηn+1
v , φn+1

h

)
|+ |b∗

(
2ψnh − ψn−1

h , v(tn+1), φn+1
h

)
|+ |G1(t, v, w, φn+1

h )|, (3.13)

and

1

4∆t

(
‖ψn+1

h ‖2−‖ψnh‖2+‖2ψn+1
h −ψnh‖2−‖2ψnh−ψn−1

h ‖2+‖ψn+1
h −2ψnh+ψn−1

h ‖2
)
+
ν + νm

2
‖∇ψn+1

h ‖2

≤ (1 + θ)
|ν − νm|

2

{
|
(
∇ηnv ,∇ψn+1

h

)
|+ |(∇φnh,∇ψn+1

h )|
}

+ θ
|ν − νm|

2

{
|
(
∇ηn−1

v ,∇ψn+1
h

)
|

+ |(∇φn−1
h ,∇ψn+1

h )|
}

+
ν + νm

2
|
(
∇ηn+1

w ,∇ψn+1
h

)
|+ |b∗

(
2ηnv − ηn−1

v , w(tn+1), ψn+1
h

)
|

+ |b∗
(
2vnh − vn−1

h , ηn+1
w , ψn+1

h

)
|+ |b∗

(
2φnh − φn−1

h , w(tn+1), ψn+1
h

)
|+ |G2(t, v, w, ψn+1

h )| (3.14)

We now turn our attention to finding bounds on the right side terms of(3.13) (the estimates for
(3.14) are similar). Applying Cauchy-Schwarz and Young’s inequalities on the first five terms results
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in

(1 + θ)
|ν − νm|

2
|(∇ψnh ,∇φn+1

h )| ≤ (1 + θ)
|ν − νm|

4

(
‖∇ψnh‖2 + ‖∇φn+1

h ‖2
)
,

θ
|ν − νm|

2
|(∇ψn−1

h ,∇φn+1
h )| ≤ θ |ν − νm|

4

(
‖∇φn+1

h ‖2 + ‖∇ψn−1
h ‖2

)
,

(1 + θ)
|ν − νm|

2
|
(
∇ηnw,∇φn+1

h

)
| ≤ α

28
‖∇φn+1

h ‖2 +
7(1 + θ)2(ν − νm)2

4α
‖∇ηnw‖2,

θ
|ν − νm|

2
|
(
∇ηn−1

w ,∇φn+1
h

)
| ≤ α

28
‖∇φn+1

h ‖2 +
7θ2(ν − νm)2

4α
‖∇ηn−1

w ‖2,

ν + νm
2
|
(
∇ηn+1

v ,∇φn+1
h

)
| ≤ α

28
‖∇φn+1

h ‖2 +
7(ν + νm)2

4α
‖∇ηn+1

v ‖2

Applying Hölder and Young’s inequalities with (2.1) on the first two nonlinear terms yields

|b∗
(
2ηnw − ηn−1

w , v(tn+1), φn+1
h

)
| ≤ C‖∇(2ηnw − ηn−1

w )‖‖∇v(tn+1)‖‖∇φn+1
h ‖

≤ α

28
‖∇φn+1

h ‖2 +
7C

α
‖∇v(tn+1)‖2‖∇(2ηnw − ηn−1

w )‖2,

|b∗
(
2wnh − wn−1

h , ηn+1
v , φn+1

h

)
| ≤ C‖∇(2wnh − wn−1

h )‖‖∇ηn+1
v ‖‖∇φn+1

h ‖

≤ α

28
‖∇φn+1

h ‖2 +
7C

α
‖∇(2wnh − wn−1

h )‖2‖∇ηn+1
v ‖2.

For the third nonlinear term, we use Hölder’s inequality, Sobolev embedding theorems, Poincare’s
and Young’s inequalities to reveal

|
(
(2ψnh − ψn−1

h ) · ∇v(tn+1), φn+1
h

)
| ≤ C‖2ψnh − ψn−1

h ‖‖∇v(tn+1)‖L6‖φn+1
h ‖L3

≤ C‖2ψnh − ψn−1
h ‖‖v(tn+1)‖H2‖φnh‖1/2‖∇φn+1

h ‖1/2

≤ C‖2ψnh − ψn−1
h ‖‖v(tn+1)‖H2‖∇φn+1

h ‖

≤ α

28
‖∇φn+1

h ‖2 +
7C

α
‖v(tn+1)‖2H2‖2ψnh − ψn−1

h ‖2.

Using Taylor’s series, Cauchy-Schwarz and Young’s inequalities the last term is evaluated as

|G1(t, v, w, χh)| ≤ C(∆t)4
(
‖vttt(t∗)‖2 + ‖∇wtt(t∗∗)‖2‖∇v(tn+1)‖2

)
+

7(ν − νm)2(1− θ)2(∆t)2

4α
‖∇wt(t∗∗∗)‖2 +

α

28
‖∇φn+1

h ‖2,

with t∗, t∗∗, t∗∗∗ ∈ [tn−1, tn+1]. Using these estimates in (3.13) and reducing produces

1

4∆t

(
‖φn+1

h ‖2−‖φnh‖2+‖2φn+1
h −φnh‖2−‖2φnh−φn−1

h ‖2
)
+
α+ ν + νm

4
‖∇φn+1

h ‖2 ≤ θ |ν − νm|
4

‖∇ψn−1
h ‖2

+(1+θ)
|ν − νm|

4
‖∇ψnh‖2+

7(1 + θ)2(ν − νm)2

4α
‖∇ηnw‖2+

7θ2(ν − νm)2

4α
‖∇ηn−1

w ‖2+
7(ν + νm)2

4α
‖∇ηn+1

v ‖2

+
7C

α
‖∇v(tn+1)‖2‖∇(2ηnw−ηn−1

w )‖2+
7C

α
‖∇(2wnh−wn−1

h )‖2‖∇ηn+1
v ‖2+

7C

α
‖v(tn+1)‖2H2‖2ψnh−ψn−1

h ‖2

+ C(∆t)4
(
‖vttt(t∗)‖2 + ‖∇wtt(t∗∗)‖2‖∇v(tn+1)‖2

)
+

7(ν − νm)2(1− θ)2(∆t)2

4α
‖∇wt(t∗∗∗)‖2.

(3.15)
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Apply similar techniques to (3.14), we get

1

4∆t

(
‖ψn+1

h ‖2−‖ψnh‖2+‖2ψn+1
h −ψnh‖2−‖2ψnh−ψn−1

h ‖2
)
+
α+ ν + νm

4
‖∇ψn+1

h ‖2 ≤ θ |ν − νm|
4

‖∇φn−1
h ‖2

+(1+θ)
|ν − νm|

4
‖∇φnh‖2+

7(1 + θ)2(ν − νm)2

4α
‖∇ηnv ‖2+

7θ2(ν − νm)2

4α
‖∇ηn−1

v ‖2+
7(ν + νm)2

4α
‖∇ηn+1

w ‖2

+
7C

α
‖∇w(tn+1)‖2‖∇(2ηnv−ηn−1

v )‖2+
7C

α
‖∇(2vnh−vn−1

h )‖2‖∇ηn+1
w ‖2+

7C

α
‖w(tn+1)‖2H2‖2φnh−φn−1

h ‖2

+ C(∆t)4
(
‖wttt(s∗)‖2 + ‖∇vtt(s∗∗)‖2‖∇w(tn+1)‖2

)
+

7(ν − νm)2(1− θ)2(∆t)2

4α
‖∇vt(s∗∗∗)‖2,

(3.16)

with s∗, s∗∗, s∗∗∗ ∈ [tn−1, tn+1]. Now add equations (3.15) and (3.16), multiply by 4∆t, use regularity
assumptions, ‖φ0

h‖ = ‖ψ0
h‖ = ‖φ1

h‖ = ‖ψ1
h‖ = 0, ∆tM = T , and sum over the time steps to find

‖φMh ‖2 + ‖2φMh − φM−1
h ‖2 + ‖ψMh ‖2 + ‖2ψMh − ψM−1

h ‖2 + 2α∆t

M∑
n=2

(
‖∇φnh‖2 + ‖∇ψnh‖2

)
≤ C∆t

M∑
n=0

(
‖∇ηnv ‖2 + ‖∇ηnw‖2

)
+ C

(
(∆t)4 + (ν − νm)2(1− θ)2(∆t)2

)
+ C∆t

M−1∑
n=1

(
‖∇
(
2wnh − wn−1

h

)
‖2‖∇ηn+1

v ‖2 + ‖∇
(
2vnh − vn−1

h

)
‖2‖∇ηn+1

w ‖2
)

+ C∆t
M−1∑
n=1

(
‖w(tn+1)‖2L∞(0,T ;H2(Ω))‖2φ

n
h − φn−1

h ‖2 + ‖v(tn+1)‖2L∞(0,T ;H2(Ω))‖2ψ
n
h − ψn−1

h ‖2
)
.

(3.17)

Applying the discrete Gronwall lemma and bounds for ‖∇ηv‖ and ‖∇ηw‖, we have for any ∆t > 0
that

‖φMh ‖2+‖ψMh ‖2+2α∆t
M∑
n=2

(
‖∇φnh‖2 + ‖∇ψnh‖2

)
≤ C

(
h2k + (∆t)4 + (ν − νm)2(1− θ)2(∆t)2

)
.

Now using the triangle inequality completes the proof.

4 Numerical Experiments

In this section we perform three numerical experiments: a test of stability with varying θ, a veri-
fication of convergence rates, and simulation of MHD channel flow past a step. For the first two
tests, we use the test problem with analytical solution

v =

(
cos y + (1 + et) sin y
sinx+ (1 + et) cosx

)
, w =

(
cos y − (1 + et) sin y
sinx− (1 + et) cosx

)
p = −λ = sin(x+ y)(1 + et),

on the domain Ω = (0, 1)2. The forcings f1 and f2 are calculated from the true solution, the values
of ν and νm, and the initial conditions and boundary conditions use the analytical solution. All
simulations were run using the software Freefem++ [19], and (P2, P

disc
1 ) Scott-Vogelius elements

on barycenter refined triangular meshes.

13



4.1 Numerical experiment 1: Testing stability versus θ

For our first numerical test, we consider stability of the proposed algorithm for varying θ, using the
test problem described above with ν = 1 and νm = 0.1. We simulate until T=1 using Algorithm
3.1 with h = 1/64, ∆t = 1/256, and three choices of θ: θ = 1 (the BDF2 case), θ = 0.167 and
θ = θcritical = 0.111. Our theoretical results prove that the scheme is stable for θ < θcritical, and
suggest the scheme is unstable for larger θ.

Figure 1 shows plots of 1
2‖∇v

n
h‖2 and 1

2‖∇w
n
h‖2 with time, for each of the θ values. The solution

norms remain stable for θ = θcritical = 0.111. However, for both cases of θ > θcritical, we observe
solution blowup / instability. In particular, for the BDF2 case (θ = 1), the blowup occurs very
quickly.

Time
0 0.2 0.4 0.6 0.8 1

1 2
‖∇

v
θ
‖2

0

5

10

15

20

  θ1 = 1

  θ2 = 1/6

  θ3 = 1/9

Time
0 0.2 0.4 0.6 0.8 1

1 2
‖∇

w
θ
‖2

0

5

10

15

20

  θ1 = 1

  θ2 = 1/6

   θ3 = 1/9

Figure 1: Plots of 1
2‖∇vh‖

2 and 1
2‖∇wh‖

2 versus time, for numerical experiment 1. Only the case
of θ = θcritical remains stable.

4.2 Numerical experiment 2: Convergence rate verification

Next, we test the theoretical convergence rates predicted by the theory. Here, we use the same
analytical test problem as the first numerical example, but now with ν = 0.001 and νm = 0.01,
θ = θcritical = 1

9 , and (P2, P
disc
1 ) Scott-Vogelius elements on barycenter refined triangular meshes.

Spatial and temporal convergence rates are calculated, and from the theory we expect O(h2 +∆t2 +
(1 − θ)|ν − νm|∆t) convergence. For spatial convergence testing, we select a very small endtime
T = 0.001, fix ∆t = T

8 , and then compute on successively refined uniform meshes. For temporal
convergence, we fix h = 1/64, T = 1, and compute with successively refined time step sizes.

Errors and rates are shown in table 1 for v, and we omit the w results since they are very
similar. From the tables, we observe second order spatial convergence as expected. For temporal
convergence, we also observe a rate near 2. We also compute errors and rates for usual BDF2
(θ = 1) as ∆t is refined, and we observe from the tables that BDF2 error blows up as ∆t → 0;
these terrible BDF2 results are expected since 1� θcritical.

4.3 Numerical experiment 3: MHD Channel Flow over a step

Our final experiment is to test the proposed method for MHD channel flow past a step. The
problem setup follows the classical NSE benchmark [17], using Ω = (0, 30) × (0, 10) with a 1 × 1
step placed five units into the channel on the bottom. We take T=40, ∆t = 0.025, and full Dirichlet
boundary conditions corresponding to no slip velocity on the walls, u =< y(10 − y)/25, 0 >T on
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Temporal convergence (fixed h=1/64)
θ = 1(BDF2) θ = 1/9

∆t ‖v − vh‖2,1 rate ‖v − vh‖2,1 rate
T
4

9.006e-2 7.410e-2
T
8

3.625e-2 1.31 2.574e-2 1.53
T
16

9.298e-2 – 7.668e-3 1.75
T
32

4.995e+2 – 1.962e-3 1.97
T
64

5.217e+4 – 4.178e-4 2.23

Spatial convergence (fixed T=0.001, ∆t = T
8

)

θ = 1/9
h ‖v − vh‖2,1 rate
1
4

1.009e-4
1
8

2.538e-5 1.99
1
16

6.363e-6 2.00
1
32

1.598e-6 1.99
1
64

4.014e-7 1.99

Table 1: Spatial and temporal convergence rates for ν = 0.01, νm = 0.001, using the critical θ = 1
9
. Also shown is

the blowup of error as ∆t→ 0 when θ = 1 (the usual BDF2 case).

the inlet and outlet, and B =< 0, 1 >T on all boundaries. The initial conditions corresponds to
no magnetic field and a parabolic velocity profile u0 =< y(10 − y)/25, 0 >T . A coupling number
of s = 0.01 is used in all the simulations, as is a Delaunay generated triangulation which provides
1,778,630 total degrees of freedom when used with (P2, P

disc
1 ) Scott-Vogelius elements.

We show results for two cases below, the case ν = 0.001 and νm = 1 in figure 2, and ν = 0.001
and νm = 0.1 in figure 3. For each case, we ran simulations with θ = θcritical, a somewhat larger θ,
and also θ = 1 (BDF2). The figures show plots of streamlines over speed contours, and magnetic
field contours at T=40. Only the simulations with θ = θcritical remained stable and accurate to
T=40. The simulations with larger θ are clearly very inaccurate, and exhibit spurious oscillations
and instability.

5 Conclusion and future works

We proposed, analyzed, and tested a new, efficient scheme for MHD, and rigorously proved its
unconditional stability, well-posedness, and convergence, under an appropriate choice of θ (which
is made a priori, based on ν and νm). The proposed method may be an enabling tool for MHD
simulations, since it stably decouples the MHD system into two Oseen problems at each timestep
that can be solved simultaneously, converges optimally in space, and behaves like second order in
time when ν and νm are small, all without any restriction on the time step size or on data ν and νm
(which the full BDF2 method does require). The decoupling allows for the solving of potentially
much bigger problems than primitive variable MHD algorithms can solve, since schemes in primitive
variables require solving very large coupled linear systems (or excessively small time step sizes) for
stable computations.

In addition to the possibility of more easily solving bigger MHD problems with the proposed
method compared to fully coupled methods based on primitive variable formulations, it is worth
exploring if the proposed scheme can likely be combined with recent stabilization ideas such as
that in [32], for more accurate large scale simulations that don’t have sufficient resolution to fully
resolve all active scales.
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θ = θcritical = 0.001

θ = 0.01

θ = 1 (BDF2)

Figure 2: Velocity and magnetic field solutions at T = 40, for s = 0.01, ν = 0.001 and νm = 1.0, for varying θ.
For θ = θcritical, a stable and accurate solution is found, and unstable solutions are found for larger θ.
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θ = θcritical = 0.0101

θ = 0.02

θ = 1 (BDF2)

Figure 3: Velocity and magnetic field solutions at T = 40, for s = 0.01, ν = 0.001 and νm = 0.1, for varying θ.
For θ = θcritical, a stable and accurate solution is found, and unstable solutions are found for larger θ.
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7 Appendix

We prove here a conditional stability result for the full second order method, i.e. when θ = 1,

which does not assume 1
2 < Prm < 2. The condition is that ∆t ≤ h2(ν+νm−|ν−νm|)

Ci(ν−νm)2
, where Ci an

the inverse inequality constant, and thus if ν − νm is not small (which is equivalent to Prm near
1), this can be a severe timestep restriction when fine meshes are used.

Lemma 7.1 (BDF2Stability). Consider Algorithm 3.1 with θ = 1 (the full second order method).
If the mesh is sufficiently regular so that the inverse inequality holds (with constant Ci) and the
time step is chosen to satisfy

∆t ≤ h2(ν + νm − |ν − νm|)
Ci(ν − νm)2

,

then the method is stable and solutions satisfy

‖vMh ‖2 + ‖wMh ‖2 +
(ν + νm − |ν − νm|)∆t

2

M−1∑
n=1

(
‖∇vn+1

h ‖2 + ‖∇wn+1
h ‖2

)
≤ C(ν, νm, v

0
h, v

1
h, w

0
h, w

1
h, f1, f2).

Proof. Choose θ = 1, χh = vn+1
h ∈ Vh and lh = wn+1

h ∈ Vh in Algorithm 3.1, (3.1)-(3.2). This
vanishes the nonlinear and pressure terms, and leaves

1

2∆t
(3vn+1

h − 4vnh + vn−1
h , vn+1

h ) +
ν + νm

2
‖∇vn+1

h ‖2 +
ν − νm

2
(∇(2wnh − wn−1

h ),∇+z
n+1
h )

= (fn+1
1 , vn+1

h ), (7.1)

1

2∆t
(3wn+1

h − 4wnh + wn−1
h , wn+1

h ) +
ν + νm

2
‖∇wn+1

h ‖2 +
ν − νm

2
(∇(2vnh − vn−1

h ),∇wn+1
h )

= (fn+1
2 , wn+1

h ). (7.2)

Using the usual BDF2 identity on the time derivative terms and adding the equations yields

1

4∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖2vn+1

h − vnh‖2 − ‖2vnh − vn−1
h ‖2 + ‖wn+1

h ‖2 − ‖wnh‖2 + ‖2wn+1
h − wnh‖2

−‖2wnh−wn−1
h ‖2+‖vn+1

h −2vnh+vn−1
h ‖2+‖wn+1

h −2wnh+wn−1
h ‖2

)
+
ν + νm

2

(
‖∇vn+1

h ‖2+‖∇wn+1
h ‖2

)
+
ν − νm

2
(∇(2wnh−wn−1

h ),∇vn+1
h )+

ν − νm
2

(∇(2vnh−vn−1
h ),∇wn+1

h ) = (fn+1
1 , vn+1

h )+(fn+1
2 , wn+1

h ),

(7.3)
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and then adding and subtracting the term ν−νm
2

(
∇vn+1

h ,∇wn+1
h

)
provides

1

4∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖2vn+1

h − vnh‖2 − ‖2vnh − vn−1
h ‖2 + ‖wn+1

h ‖2 − ‖wnh‖2 + ‖2wn+1
h − wnh‖2

−‖2wnh−wn−1
h ‖2+‖vn+1

h −2vnh+vn−1
h ‖2+‖wn+1

h −2wnh+wn−1
h ‖2

)
+
ν + νm

2

(
‖∇vn+1

h ‖2+‖∇wn+1
h ‖2

)
− ν − νm

2
(∇(vn+1

h − 2vnh + vn−1
h ),∇wn+1

h )− ν − νm
2

(∇(wn+1
h − 2wnh + wn−1

h ),∇vn+1
h )

+
ν − νm

2
(∇wn+1

h ,∇vn+1
h ) +

ν − νm
2

(∇vn+1
h ,∇wn+1

h ) = (fn+1
1 , vn+1

h ) + (fn+1
2 , wn+1

h ). (7.4)

Using Cauchy-Schwarz and Young’s inequalities we have that

1

4∆t

(
‖vn+1
h ‖2 − ‖vnh‖2 + ‖2vn+1

h − vnh‖2 − ‖2vnh − vn−1
h ‖2 + ‖wn+1

h ‖2 − ‖wnh‖2 + ‖2wn+1
h − wnh‖2

−‖2wnh−wn−1
h ‖2+‖vn+1

h −2vnh+vn−1
h ‖2+‖wn+1

h −2wnh+wn−1
h ‖2

)
+
ν + νm

2

(
‖∇vn+1

h ‖2+‖∇wn+1
h ‖2

)
≤ |ν − νm|

2
‖∇(wn+1

h − 2wnh + wn−1
h )‖‖∇vn+1

h ‖+
|ν − νm|

2
|‖∇(vn+1

h − 2vnh + vn−1
h )‖‖∇wn+1

h ‖

+ |ν − νm|‖∇wn+1
h ‖‖∇vn+1

h ‖+ ‖fn+1
1 ‖−1‖∇vn+1

h ‖+ ‖fn+1
2 ‖−1‖∇wn+1

h ‖. (7.5)

Young’s inequality provides the following bounds on the last five terms in (7.5):

|ν − νm|‖∇vn+1
h ‖‖∇wn+1

h ‖ ≤ |ν − νm|
2

‖∇vn+1
h ‖2 +

|ν − νm|
2

‖∇wn+1
h ‖2,

‖fn+1
1 ‖−1‖∇vn+1

h ‖ ≤ ν + νm − |ν − νm|
8

‖∇vn+1
h ‖2 +

2

ν + νm − |ν − νm|
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2 ‖−1‖∇wn+1

h ‖ ≤ ν + νm − |ν − νm|
8

‖∇wn+1
h ‖2 +

2
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‖fn+1
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2
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4
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Combining, we now have that
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The inverse inequality provides the estimate

‖∇(zn+1
h − 2znh + zn−1

h )‖2 ≤ Cih−2‖zn+1
h − 2znh + zn−1

h ‖2,

which allows equation (7.6) to be written as
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)
. (7.7)

Now using the assumption on the time step size and applying standard techniques completes the
proof.
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