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Abstract We consider time-dependent flow problems discretized with higher
order finite element methods. Applying a fully implicit time discretization or
an IMEX scheme leads to a saddle point system. This linear system is solved
using a preconditioned Krylov method, which is fully parallelized on a dis-
tributed memory parallel computer.

We study a robust block-triangular preconditioner and beside numerical re-
sults of the parallel performance we explain and evaluate the main building
blocks of the parallel implementation.

1 Introduction

The numerical simulation of time-dependent flow problems is an important
task in research and industrial applications. The flow of Newtonian incom-
pressible fluids is described by the system of the Navier-Stokes equations in
a bounded domain 2 C R%, d = 2,3, where one has to find a velocity field
u:[0,7] x 2 — R? and a pressure field p : [0, 7] x 2 — R such that

%—VAU—F(UV)U"‘Vpi in (O7T]X97 (1)

V-u=0 in [0,7] x £2.
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Here f : (0,7] x 2 — R? is a given force field, and v is the kinematic
viscosity. For brevity initial and boundary conditions are omitted. One has
to cope with some modifications for turbulent flows, namely using V-(2v.5(u))
with S(u) := 3(Vu+VuT) instead of v/Au, variable and non-linear viscosity
V= Veonst + ¥t (u), and additional velocity terms from turbulence models.

In Section 2 this system of equations is discretized in space and time.
The high spatial resolution needed for a typical domain 2 C R? leads to a
number of unknowns in the order of millions of degrees of freedom. We need
to calculate the solution at many time-steps, especially for optimization or
inverse problems. This results in a demand for a robust and fast algorithm.
We define such an algorithm in Section 3. The memory and performance
requirements for the solution process can typically be met by a distributed
memory cluster.

Let us state the requirements for the solver: Flexibility, to allow compar-
isons between different turbulence models, stabilization schemes, time dis-
cretizations, solvers, etc.. Parallelization, ranging from multicore worksta-
tions to clusters with hundred or more CPUs. Scalability, with respect to the
number of CPUs and problem size.

Combining these three requirements is a challenge. Research codes are
usually flezible, but often lack the other requirements. On the other hand
commercial codes usually work with lowest order discretization and are not
flexible enough. For higher accuracy and flexibility we favor a coupled ap-
proach for the saddle point system instead of a splitting scheme.

We use the standard Multiple Instruction, Multiple Data streams (MIMD)
parallel architecture model. The basis for the parallel implementation are
parallel linear algebra routines running on top of MPI to allow parallel as-
sembling and solving of the linear systems. The data matrices and vectors are
split row-wise between the CPUs (Section 4). We conclude the paper with
numerical results in Section 5.

2 Discretization

We start by semi-discretizing the continuous equation (1) in time. The
solution (u,p) and the data f are expressed only at discrete time-steps
0=ty <t <...<tmee = T of the time interval [0,7], denoted by the
superscript n, e.g. u”. We consider two different discretization schemes, the
typical implicit time discretization and an implicit-explicit (short IMEX)
scheme, c.f. [1]. The fully implicit time discretization leads to a sequence of
non-linear stationary problems of the form

—vAU" + cu” + (un . v)un + vpn _ f(un_l,pn_l),
V-u"=0

-ua
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where ¢ € R is a reaction coefficient related to the inverse of the time-step size
Tp = tpy1—t, and f is a modified right-hand side. Many time discretizations
fit into this implicit scheme, for instance implicit Euler, BDF(2) or diagonal-
implicit Runge-Kutta schemes. The non-linear system (2) is linearized by a
fixed-point or Newton-type iteration. Hence, we have to solve a sequence of
linear systems with a given divergence-free field b in the convective term
(b-V)u.

The iteration for the non-linearity in (2) implies high computational costs.
Explicit time-stepping is not desirable because of the strong restrictions on
the time-step size. A remedy is to treat the non-linear term (u™-V)u” in an
explicit way, while the remainder of the equation is kept implicit. These meth-
ods are called IMEX-schemes. An elegant option is to combine an explicit
Runge-Kutta scheme for the convection and an diagonal-implicit scheme, as
used above, for the rest. With this method, the non-linearity disappears.

Thus, in both cases we end up with the solution of stationary Oseen prob-
lems:

—vAu+cu+ (b-Viu+Vp=H{,

V-u=0, ®)

which are discretized via Galerkin FEM on quadrilateral meshes with continu-
ous, piece-wise (tensor-) polynomials @ of order k > 0. The inf-sup-stability
is ensured using a Taylor-Hood pair Qy.11/Q% for velocity and pressure. This
stable discretization leads to a finite-dimensional, linear saddle point system

(5%)()-() @

with finite element matrices A containing diffusion, reaction, and convection
and B containing the pressure-velocity coupling.

3 The Solver

The system (4) is solved using the preconditioned Krylov subspace method
FGMRES. This is a variant of the standard GMRES algorithm, see [12, 13].
FGMRES can cope with a changing preconditioner in each iteration. This is
required because the preconditioner is not calculated explicitly as a matrix
but is given as an implicit operator which uses iterative solvers internally.
The usage of FGMRES in the context of flow problems is also described in
detail in [9]. System (4) is preconditioned with an operator P~! of block
triangular type:

~ —1
ABT -1 (V) _ . -1 _ ABT
(B O)P <q)_F with P _<0 5 .
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Here approximations Al~ A" and S~! ~ S~ for the Schur complement
S := —BA7'BT are used. With exact evaluations of A and S the number of
outer (F)GMRES steps is at most two, see [4]; this motivates the choice of
the preconditioner. The inverse can be calculated by

pot_ (AT SATIBTSTY (A0 (18T (10
~\o 51 “\o1)\o-1)\0o-5"1)"
Each outer iteration requires the solution of two inner problems: the appli-
cations of A~! and S~!, and there is one matrix-vector product with the
matrix BT

There are several reasons for choosing a coupled approach. Using a projec-
tion method would introduce a CFL-like condition restricting the maximum
time-step size. The main advantage of projection type methods (computa-
tional speed) can be simulated by only applying the preconditioner with a
simple iteration method with a fixed number of steps (e.g. one). The result is
comparable to a projection step method. Furthermore, the coupled approach
fits better to higher order methods. Finally, this method has the advantage
that the approximation quality of A=! and S~! is adjustable at will; the
outer iteration converges either way.

The A-block forms a vector-valued convection-diffusion-reaction problem,
which is a lot larger than the Schur complement. It is non-symmetric due to
the convection part and the vector components may be coupled as a result of
modifications for turbulent calculations, c.f. Section 1. An important part is
the (strong) reaction term, which results in the low condition number of the
matrix. Thus a BiCGStab solver with algebraic multi-grid preconditioning
through BoomerAMG, [8], provides good results for A~1.

The approximation of the Schur complement S~ is more difficult, because
S = —BA~'BT is dense and hence cannot be built explicitly as a matrix.

Fortunately, the reaction-dominated A can be simplified with the mass matrix
M,:

S~ [B(eM,)'BT] " = ¢(BM;'BT) !
We approximate p = S ~1q by a pressure Poisson problem:

1
fEAp— q (5)

and suitable boundary conditions, see [14]. The correct boundary conditions
stem from BM, ' BT, which cannot be applied directly. As an approximation
there are Neumann boundary conditions applied in (5) where Dirichlet data
is applied to the velocity in (1). Vice versa if Neumann boundary conditions
are given in (1), homogeneous Dirichlet boundary conditions are applied in
the Schur complement, (5). Periodic boundary conditions for the velocity
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can be treated with periodic boundary conditions in (5), which provide good
results, c.f. Section 5.

The block triangular structure has been used for years, a good general
overview is given in [4]. The form of the preconditioner is already described
in [10], although we neclect the viscosity term in the Schur complement. A
discussion of block preconditioners for flow problems can be found in [6] and
[11]. Using FGMRES instead of e.g. GMRES proved to be a huge advantage
not discussed there, but is motivated in [9].

4 Implementation Overview

The implementation of the solver described in this paper is built on top of a
collection of known libraries. The basis is given by an MPI implementation
for the parallel communication and the library PETSc, see [2], which supplies
us with data structures and algorithms for scalable parallel calculations: ma-
trices, vectors, and iterative solvers. The finite elements, mesh handling and
assembling are performed by deal.Il, see [3], which directly interfaces with
the linear algebra objects from PETSc.

For the parallel calculations the rows in the system matrix have to be
partitioned, such that each row is stored on exactly one CPU. This can be
done with the following algorithm: first, create a graph, with cells as vertices
and edges between two vertices if the corresponding cells are neighbors. This
graph is partitioned into mostly equal-sized sets, such that each CPU “owns”
a number of cells. The library METIS minimizes the number of cut edges.
This reduces the amount of communication in parallel calculations. With the
partition of the cells one can assign the owner for each degree of freedom.
If two neighboring cells are owned by different CPUs, degrees of freedom on
the shared face have to be assigned to one or the other CPU. By controlling
this allocation one tries to balance the number of local rows per CPU. This
improves the scalabilty of the solution process. The authors improved the
way deal.Il assigns these degrees of freedom, which decreases the imbalance
of the number of degrees of freedom by up to 50%. This is done by making a
(deterministic) pseudo-random choice.

The main loop is structured as follows: the outermost loop is the time
stepping. For each time step the inner loop is repeated for each stage of
the time discretization. For a fully implicit time discretization a fixed-point
iteration surrounds the inner part. Finally the inner part consists of assem-
bling and then solving the linear system with FGMRES. In each iteration
the preconditioner is applied once. Finally, the preconditioner consists of the
preconditioned inner solvers for A and S.
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5 Numerical Results

We present the simulation of “Homogeneous Decaying Isotropic Turbulence”
which is a widespread turbulence benchmark. The domain is given by a cube
[0, 27r]3 with periodic boundary conditions. A starting value (isotropic random
velocity, see Figure 1) from a given energy spectrum (calculated via Fourier
transform) is prescribed. The problem has a Taylor-scale Reynolds number
of Rey =150 and the viscosity is v =~ 1.5e-5 (air). As a turbulence model we
choose a standard LES Smagorinsky model with v, = (CsA,)?[S(u)|, |M|:=
(2M - M )%. The energy dissipation in time is compared to experimental data
from [5], see Figure 1, right. The calculations were done with Q2/@Q elements
on a mesh with 163 cells and the Smagorinsky constant Cy = 0.17. Here
the filter-width A}, is given by h. This constant was not optimized but the
results show good agreement to experimental data. For time discretization
we apply a second order IMEX-scheme with a time-step size of 0.0087. The
outer FGMRES residual is chosen as le-7 to the starting residual, whereas
the inner residuals are set to le-5 (also relative).

There are several important numerical results. The number of outer FGM-
RES iterations is independent of the number of CPUs, because there is no
difference to the serial algorithm. The number of iterations is independent of
the mesh size and lies between 5 to 6 iterations, see Table 1, left. This proves
that the preconditioner design works well and the accuracy of A~! and S~!
is sufficient.

Now, we consider the so-called strong scalability, where the number of
CPUs n is increased while the mesh size is kept fixed at h = 1/32, see Table
1, right. The scaling up to 64 processors is quite reasonable. The performance
degrades slightly for larger number of processors, especially in the solution
process. There are two reasons for this. First, the problem size is getting too
small for the local calculations to dominate the communication costs. Second,

Fig. 1 left: iso-surface of initial velocity spectrum; right: energy spectra at t = 0.87
and ¢ = 2.00 (upper and lower line) and corresponding experimental data (symbols)
with starting value.
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Table 1 left: number of FMGRES iterations with respect to mesh size; right: speed-
up and efficiency of assembling and solving.

1/h  # DoFs # It. # CPUs speed-up efficency speed-up efficiency
assembling assembling solving solving

8 2312 5
16 112724 5 4 1.00 100% 1.00 100%
32 859812 5 8 1.92 96% 1.72 86%
48 2855668 6 16 3.70 93% 2.91 73%
64 6714692 5 32 6.33 79% 4.69 59%
64 12.79 79% 7.39 46%

the solver for the A-block, which takes the most time in the solution process,
does not scale linearly.

Table 2 shows the weak scalability, where the problem size increases to-
gether with the number of CPUs. This keeps the number of degrees of free-
dom per CPU nearly constant. The results are satisfying and efficiency only
degrades slightly with a large number of CPUs.

6 Summary and outlook

We recap our plans stated in the introduction and critically look what we
accomplished in this paper. The development of a highly scalable parallel
Navier-Stokes solver is underway. The parallel scalability is shown with the
numerical results, but is constrained to a larger number of CPUs for several
reasons. Some parts of deal.Il are not yet parallellized, e.g., mesh handling
and management of the degrees of freedom. The result is degraded perfor-
mance and an increased demand on memory for a larger number of CPUs.
This is visible starting at around 100 CPUs. With [7] we see good scaling
up to thousands of CPUs with respect to computational costs and mem-
ory requirements. The goal of flexibility is solved in large parts. On the one
hand we are able to compare different time discretizations, finite element or-

Table 2 Weak scalability of assembly- and solution-process w.r.t. increasing number
of CPUs and number of degrees of freedom (time and efficiency)

# CPUs 1/h  # DoFs assembly solving

6 24 368572 20.07s  100% 44.86s  100%
16 32 859812 18.21s 96% 49.14s 80%
54 48 2855668 19.16s 90%  49.02s 79%

128 64 6714692 19.98s 86% 54.64s 70%
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ders and turbulence models. On the other hand we only look at instationary
problems with small viscosities. Extending and testing the solver for a broad
spectrum of test problems is still work in progress. The different regime of
stationary and convection dominated flow poses challenges. The performance
of the algebraic multi-grid for the A-Block needs to be verified there.

We present a flexible, parallel, and scalable solver framework for the so-
lution of the incompressible Navier-Stokes equations. The numerical results
prove that the design of the preconditioner is promising.
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