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A brief history of mathematical biology

1202: Leonardo of Pisa models a population of rabbits with a numerical sequence in his
book Liber Abaci.

1760: Daniel Bernoulli modeled the spread of smallpox with differential equations.

1798: Thomas Malthus used exponential growth models in An Essay on the Principle of
Population.

1836: Pierre Francois Verhulst developed the logistic growth model.

1879: First use of mathematics in evolutionary ecology, by Fritz Müller

1901: First use of the term theoretical biology, by Johannes Reinke.

1926: Lotka-Volterra predator-prey models published.

1927: SIR model of infectious disease spread proposed by Kermack and McKendrick.

1953: Discovery of the structure of DNA by Watson, Crick, and Franklin.

1990: Human genome prodject launched.

1995: First paper publised using the term microarray.

2003: Human genome prodject declared complete.

2022: Last gapless assembly of the human genome complete.
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The future of mathematical biology
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What does algebra have to do with biology?

Usually, when we think of mathematical biology, we think of models such as this:

dS

dt
“ ´αSI

dI

dt
“ αSI ´ γI

dR

dt
“ γI
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What does algebra have to do with biology?

Whereas algebra might remind us more of this:

How could these two topics possibly be related??
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What does algebra have to do with biology?

Linear algebra is fundamental to mathematical biology.

Population (Leslie) matrix:
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Competing species (Lotka-Volterra equations):

P 1 “ Pp1´ P ´ Qq
Q1 “ Qp.75´ Q ´ .5Pq

„

X 1

Y 1



“

„

´1 ´1
0 .25

 „

X
Y



´

„

X 2 ` XY
.5XY ` Y 2



,

via changing variables pX ,Y q “ pP ´ 1,Qq.
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What does algebra have to do with biology?

Linear algebra, the study of linear polynomials and their solutions.

Analyzing nonlinear polynomials and their solutions is much more complex.

It involves fields such as algebraic geometry and computational algebra.

Though these themes are not as ubiquitous in biology as linear algebra is, they arise in a
number of biological problems.

Algebraic Biology is the subfield that encompasses these problems, and the new mathematics
that they spawn.

Examples of where biological problems where nonlinear algebra arises:

1. Biochemical reaction networks

2. Algebraic statistics and data science

3. Place fields in neuroscience

4. Boolean models of molecular networks

I’ll also discuss some new (pure) mathematics that has arisen from these biological problems.
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Linear algebra vs. nonlinear algebra
A vector space is a:

set V of vectors (e.g., Rn)

field K of scalars (e.g., R, C, or Zp “ t0, 1, . . . , p ´ 1u)

that is closed under addition, subtraction, and scalar multiplication of vectors.

Many concepts in nonlinear algebra have simple linear algebra analogues. For example,

the subspace of V spanned by v1, . . . , vk is the set

Spanpv1, . . . , vk q “
 

a1v1 ` ¨ ¨ ¨ ` akvk | ai P Ku.

the ideal of R “ Frxs generated by polynomials f1, . . . , fk is the set

`

f1, . . . , fk
˘

“
 

a1pxqf1pxq ` ¨ ¨ ¨ ` ak pxqfk pxq | ai pxq P R
(

.

nonlinear algebra concept linear algebra concept

polynomial ring R “ K rx1, . . . , xns vector space V

ideal I ď R subspace W ď V

Gröbner basis G “nice” vector space basis B

algebraic variety solution space
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Some general resources

Books

U. Alon. An introduction to systems biology: design principles of biological circuits. 2nd edition.
CRC press, 2019.

D. Cox. Applications of polynomial systems. 2020.

H. A. Harrington, M. Omar, and M. Wright. Algebraic and Geometric Methods in Discrete
Mathematics, volume 685. American Mathematical Society, 2017.

N. Jonoska and M. Saito. Discrete and Topological Models in Molecular Biology. Springer, 2013.

R. Robeva. Algebraic and Discrete Mathematical Methods for Modern Biology. Elsevier, 2015.

R. Robeva and T. Hodge. Mathematical Concepts and Methods in Modern Biology: Using Modern
Discrete Models. Academic Press, 2013.

R. Robeva and M. Macauley. Algebraic and Combinatorial Computational Biology. Elsevier, 2018.

Articles

R. Laubenbacher and B. Sturmfels. Computer algebra in systems biology. Amer. Math. Monthly,
pages 882–891, 2009.

M. Macauley and R. Robeva. Algebraic models, pseudomonomials, and inverse problems in algebraic
biology. Lett. Biomath., 7(1):81–104, 2020.

M. Macauley and N. Youngs. The case for algebraic biology: from research to education. Bull.
Math. Biol., 82(115), 2020.

B. Sturmfels. Can biology lead to new theorems? Annual report of the Clay Mathematics Institute,
pages 13–26, 2005.
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1. Biochemical reaction networks

Karin Gatermann (1961–2005) introduced computational algebra tools to reaction networks.

Assuming the law of mass-action kinetics,

A` B
k1
ÝáâÝ
k2

C , A
k3
ÝÑ 2B,

leads to the following system of ODEs:

x 11 “ ´k1x1x2 ´ k3x1 ` k2x3

x 12 “ ´k1x1x2 ` k2x3 ` 2k3x1

x 13 “ k1x1x2 ´ k2x3.

The steady-state solutions (set each x 1i “ 0) are an algebraic variety.

Gatermann introduced complex-balancing (toric) dynamical systems. Steady-states are toric
varieties.

Global attractor conjecture

For a complex-balanced system, each equilibria c P RN
ą0 is globally asymptotically stable

relative to the interior of its compatibility class.
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1. Biochemical reaction networks

Research goals and open-ended questions

Key idea

What does the polynomial algebra tells us about the dynamics of the ODEs?

Persistence conjecture (Feinberg, 1987)

Every weakly reversible mass-action kinetics ODE is persistent, regardless of the rate
constants.

Permanence conjecture (stronger)

Every endotactic reaction network is permanent, regardless of rate constants.

Global attractor conjecture (weaker)

For a complex-balanced system, each equilibria c P RN
ą0 is globally asymptotically stable

relative to the interior of its compatibility class.

M. Macauley (Clemson) What is Algebraic Biology? Algebraic Biology 11 / 39

mailto:macaule@clemson.edu


1. Chemical reaction network books: 2000 and 2019
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1. Algebraic systems biology at Oxford (Heather Harrington)
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1. Chemical reaction networks
Books

M. Feinberg. Foundations of Chemical Reaction Network Theory. Springer, 2019.

K. Gatermann. Computer Algebra Methods for Equivariant Dynamical Systems. Springer, 2000.

Articles

C. Conradi, M. Mincheva, and A. Shiu. Emergence of oscillations in a mixed-mechanism
phosphorylation system. Bull. Math. Biol., 81(6):1829–1852, 2019.

G. Craciun, A. Dickenstein, A. Shiu, and B. Sturmfels. Toric dynamical systems. J. Symb. Comput.,
44(11):1551–1565, 2009.

G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction networks: I. the
injectivity property. SIAM J. Appl. Math., 65(5):1526–1546, 2005.

G. Craciun and M. Feinberg. Multiple equilibria in complex chemical reaction networks: Ii. the
species-reaction graph. SIAM J. Appl. Math., 66(4):1321–1338, 2006.

G. Craciun, F. Nazarov, and C. Pantea. Persistence and permanence of mass-action and power-law
dynamical systems. SIAM J. Appl. Math., 73(1):305–329, 2013.

E. Gross, H. A. Harrington, Z. Rosen, and B. Sturmfels. Algebraic systems biology: a case study for
the wnt pathway. Bull. Math. Biol., 78(1):21–51, 2016.

A. Shiu and B. Sturmfels. Siphons in chemical reaction networks. Bull. Math. Biol.,
72(6):1448–1463, 2010.

Surveys / book chapters

C. Pantea, A. Gupta, J. B. Rawlings, and G. Craciun. The QSSA in chemical kinetics: as taught and
as practiced. In Discrete and Topological Models in Molecular Biology, pages 419–442. Springer,
2014.

K. Conradi and C. Pantea. Multistationarity in biochemical networks: results, analysis, and
examples. In Algebraic and Combinatorial Computational Biology, pages 279–317. Elsevier, 2018.
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2. Phylogenetics and algebraic statistics

Consider a simple evolutionary relationship of two species and their most common ancestor.

Fix a particular base in the genome at a site that all three species share in a mutual
alignment.

Under the Jukes-Cantor model of evolution, the probability of a mutation at that site is a
constant.

ancestor

human

α

chimp

β

It is straightforward to compute the probability that (human,chimp)=(A,C):

PpACq “ P

ˆ

A C

A
˙

` P

ˆ

A C

G
˙

` P

ˆ

A C

C
˙

` P

ˆ

A C

T
˙

“
1

4
p1´ 3αqβ `

1

4
αβ `

1

4
αp1´ 3βq `

1

4
αβ “

1

4
pα` β ´ αβq.
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2. Phylogenetics and algebraic statistics

Similarly, PpAAq “ 1
4
p1´ 3αqp1´ 3βq ` 3

4
αβ “ 3αβ ` 1

4
p1´ 3α´ 3βq.

The space of possible probabilities can be described by a mapping

ϕ : R2 ÝÑ R16, ϕ : pα, βq ÞÝÑ
`

PpAAq,PpACq, . . . ,PpTT q
˘

.

For an n-leaf tree with m “ 2n ´ 2 edges, we get a map ϕ : Rm Ñ R4n .

The intersection of Impϕq, with the d “ 4n ´ 1 dimensional simplex ∆d is the phylogenetic

model, MT Ď R4n .

The polynomials that vanish on MT is called the ideal of phylogenetic invariants,

IT “ IT pMT q “
 

f P Rrx1, . . . , x4n s | f ppq “ 0, for all p PMT

(

.

The points that vanish on all polynomials in the ideal IT is called the phylogenetic variety of
T :

VT “ VT pIT q “
 

p P R4n | f ppq “ 0, for all f P IT
(

.
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2. Phylogenetics and algebraic statistics

Books

D. Maclagan and B. Sturmfels. Introduction to Tropical Geometry, volume 161. American
Mathematical Soc., 2015.

L. Pachter and B. Sturmfels. Algebraic Statistics for Computational Biology, volume 13. Cambridge
University Press, 2005.

G. Pistone, E. Riccomagno, and H. P. Wynn. Algebraic Statistics: Computational Commutative
Algebra in Statistics. Chapman and Hall/CRC, 2000.

R. Rabadán and A. J. Blumberg. Topological Data Analysis for Genomics and Evolution: Topology
in Biology.

S. Sullivant. Algebraic Statistics, volume 194. American Mathematical Soc., 2018.

Articles

M. Casanellas and J. A. Rhodes. Algebraic methods in phylogenetics. Bull. Math. Biol.,
81:313–315, 2019.

J. Chifman and L. Kubatko. Quartet inference from SNP data under the coalescent model.
Bioinformatics, 30(23):3317–3324, 2014.

P. Diaconis, B. Sturmfels, et al. Algebraic algorithms for sampling from conditional distributions.
Ann. Stat., 26(1):363–397, 1998.

J. Fernández-Sánchez and M. Casanellas. Invariant versus classical quartet inference when evolution
is heterogeneous across sites and lineages. Syst. Biol., 65(2):280–291, 2016.

L. Pachter and B. Sturmfels. The mathematics of phylogenomics. SIAM Rev., 49(1):3–31, 2007.
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2. Algebra, topology, and statistics
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3. Place fields in neuroscience

Experiments have shown that neurons called place cells fire based on an animal’s location.

The place fields U “ tU1,U2,U3,U4,U5u

define the neural code

C “ t00000, 10000, 11000, 10100, 11100,

10010, 10110, 00100, 00110, 00101,

00111, 00010, 00011, 00001u?

Motivating question

Given a neural code, reconstruct the place fields, if possible.

The shaded region is encoded by the pseudomonomial called its chracteristic polynomial:

χcpxq “ x1px2 ´ 1qx3px4 ´ 1qpx5 ´ 1q “ x1x2x3x4 x5 “

#

1 x “ c

0 x ‰ c.

We can encode C and U by ideals in F2rx1, . . . , x5s involving these and other polynomials.
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3. Place fields in neuroscience

Another interesting question

Given a neural code, can it be realized by a collection of open convex place fields?

For example, the code
C “ t000, 100, 010, 101, 110, 011u

cannot be realized by open convex place fields.

Many of these questions can be approached algebraically. Every code C has a vanishing ideal,

IC “
 

f P F2rx1, . . . , xns | f pcq “ 0 for all c P C
(

,

and a neural ideal, generated by the characteristic polynomials of the non-code words:

JC “
`

χnpxq | n R C
˘

, where χnpxq “

#

1 x “ n

0 x ‰ n.

These ideals are related by

IC “ JC ` B “
`

tχnpxq | n R Cu Y tx2
i ´ xi | i “ 1, . . . , nu

˘

.
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3. Place fields in neuroscience

Geometric & combinatorial features encoded algebraically are receptive field (RF)
relationships.

geometric combinatorial algebraic

U1 X U2 ‰ H c1 “ c2 “ 1 for some c P C px1 ´ 1qp1´ x2q R JC

U1 Ď U2 c1 “ 1 ñ c2 “ 1 x1p1´ x2q P JC

Definition

The set of minimal pseudomonomials in JC is called the canonical form of JC .

The canonical form CFpJCq can be computed from the primary decomposition of JC .

Example

Suppose U1 Ď U2 Ď U3. The neural code is C “ t000, 111, 011, 001u and the neural ideal is

JC “
`

p1´x1qx2p1´x3q, x1p1´x2qp1´x3q, x1p1´x2qx3, x1x2p1´x3q
˘

“
`

x1p1´x2q, x2p1´x3q
˘

,

and its canonical form CFpJCq “
 

x1p1´ x2q, x2p1´ x3q, x1p1´ x3q
(

.
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3. Place fields in neuroscience

Research goals and open-ended questions

Key idea

How does the algebra encode the geometric and topological properties of the place fields?

How are certain combinatorial relationships (e.g., intersections, subsets, etc.) encoded
algebraically?

What are necessary and sufficient conditions for a neural code to be convex?

Given a code, what is the smallest dimension where it can be realized?

How can one construct the canonical form?

How do properties of the vanishing and neural ideals tells us about the place fields?

Explore the theory of pseudomonomial ideals.
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3. Algebraic neuroscience at Brown University (Carina Curto)
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3. Place fields in neuroscience
Surveys (book chapters, graduate theses)

C. Curto, A. Veliz-Cuba, and N. Youngs. Analysis of combinatorial neural codes: An algebraic approach. In Algebraic
and Combinatorial Computational Biology, pages 213–240. Elsevier, 2018.

S. A. Tsiorintsoa. Pseudo-monomials in algebraic biology. MSc thesis. AIMS South Africa, 2018.

N. Youngs. The neural ring: using algebraic geometry to analyze neural codes. PhD thesis, University of Nebraska,
Lincoln, 2014.

Articles

J. Cruz, C. Giusti, V. Itskov, and B. Kronholm. On open and closed convex codes. Discrete Comput. Geom.,
61(2):247–270, 2019.

C. Curto, E. Gross, J. Jeffries, K. Morrison, M. Omar, Z. Rosen, A. Shiu, and N. Youngs. What makes a neural code
convex? SIAM J. Appl. Alg. Geom., 1(1):222–238, 2017.

C. Curto, E. Gross, J. Jeffries, K. Morrison, Z. Rosen, A. Shiu, and N. Youngs. Algebraic signatures of convex and
non-convex codes. J. Pure Appl. Alg., 223(9):3919–3940, 2019.

C. Curto, V. Itskov, K. Morrison, Z. Roth, and J. L. Walker. Combinatorial neural codes from a mathematical coding
theory perspective. Neural Computation, 25(7):1891–1925, 2013.

C. Curto, V. Itskov, A. Veliz-Cuba, and N. Youngs. The neural ring: an algebraic tool for analyzing the intrinsic
structure of neural codes. Bull. Math. Biol., 75(9):1571–1611, 2013.

R. Garcia, L. D. Garćıa Puente, R. Kruse, J. Liu, D. Miyata, E. Petersen, K. Phillipson, and A. Shiu. Gröbner bases
of neural ideals. Int. J. Algebr. Comput., 28(04):553–571, 2018.

S. Gunturkun, J. Jeffries, and J. Sun. Polarization of neural rings. arXiv:1706.08559, 2017.

A. Kunin, C. Lienkaemper, and Z. Rosen. Oriented matroids and combinatorial neural codes. arXiv:2002.03542, 2020.

E. Petersen, N. Youngs, R. Kruse, D. Miyata, R. Garcia, and L. D. G. Puente. Neural ideals in sagemath. In
International Congress on Mathematical Software, pages 182–190. Springer, 2018.

A. Ruys de Perez, Laura Felicia Matusevich, and Anne Shiu. Neural codes and the factor complex. Adv. Appl.
Math., 114:101977, 2020.

N. Youngs. Neural ideal: a Matlab package for computing canonical forms, 2015.
https://github.com/nebneuron/neural-ideal/.

M. Macauley (Clemson) What is Algebraic Biology? Algebraic Biology 24 / 39

https://github.com/nebneuron/neural-ideal/
mailto:macaule@clemson.edu


4. Boolean models of molecular networks

Figure: The lactose operon in E. coli
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4. Delay differential equation models of molecular networks
The repressor protein binds to allolactose:

R ` nA
K1
ÝÝáâÝÝ

1
RAn,

drRAns

dt
“ K1rRsrAs

n ´ rRAns

The repressor protein binds to the operator region if there is no allolactose:

O ` R
K2
ÝÝáâÝÝ

1
OR

drORs

dt
“ K2rOsrRs ´ rORs.

β-galactosidase converts Lactose into allolactose:

L` B ÝáâÝ LB ÝÑ A` B,
drAs

dt
“ αA

rBsrLs

KL ` rLs

β-galactosidase cleaves Allolactose into glucose and galactose

A` B ÝáâÝ AB ÝÑ B ` Glu ` Gal ,
drAs

dt
“ ´αG

rBsrAs

KA ` rAs

lac permease transports lactose into the cell:

Le ` P ÝáâÝ PLe ÝÑ P ` L,
drLs

dt
“ αL

rPsrLe s

KLe ` rLe s

lac permease transports lactose out of the cell:

L` P ÝáâÝ PL ÝÑ P ` Le ,
drLs

dt
“ ´αLe

rPsrLs

KL1 ` rLs
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4. Delay differential equation models of molecular networks

This leads to the following nonlinear system of ODEs:

dM

dt
“ αM

1` K1pe´µτMAτM q
n

K ` K1pe´µτMAτM q
n
` Γ0 ´ rγMM

dB

dt
“ αBe

´µτBMτB ´ rγBB

dA

dt
“ αAB

L

KL ` L
´ βAB

A

KA ` A
´ rγAA

dP

dt
“ αPe

´µpτB`τP qMτB`τP ´ rγPP

dL

dt
“ αLP

Le

KLe ` Le
´ βLeP

L

KLe ` L
´ αAB

L

KL ` L
´ rγLL

M

A

B L

P

Le
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4. Delay differential equation models and bistability

The above ODE model captures the bistability of the lac operon.

Can a Boolean model exhibit this as well?

M. Macauley (Clemson) What is Algebraic Biology? Algebraic Biology 28 / 39

mailto:macaule@clemson.edu


4. Boolean models of molecular networks

The following Boolean network model was published in Veliz-Cuba / Stigler (2011).

M “ mRNA

P “ lac permease

B “ β-galactosidase

C “ cAMP-CAP complex

R “ repressor protein

L “ lactose

A “ allolactose

G “ glucose

MC

A

P

R

B

LGe Le

fM “ R ^ Rm ^ C
fP “ M

fB “ M

fC “ Ge

fR “ A^ Am

fL “ Ge ^ P ^ Le

fA “ L^ B

fLm “ Ge ^ ppLem ^ Pq _ Leq

fAm “ L_ Lm

fRm “ pA^ Amq _ R

The ‘e’ subscript means extracellular

The ‘m’ subscript means (at least) medium levels

To validate this model, we need to analyze it for

pGe , Le , Lemq “ p0, 0, 0q, p0, 0, 1q, p0, 1, 1q, p1, 0, 0q, p1, 0, 1q, p1, 1, 1q.
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4. Dynamics of the Boolean model, and bistability

Here is the phase space with pGe , Le , Lemq “ p0, 0, 1q, generated with BoolNet in R.
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4. Boolean models of molecular networks

We can write a Boolean model as polynomials in F2rx1, . . . , x10s.

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

f1 “ x4px5 ` 1qpx6 ` 1q

f2 “ x1

f3 “ x1

f4 “ Ge ` 1

f5 “ px7 ` 1qpx8 ` 1q

f6 “ x5 ` px7 ` 1qpx8 ` 1q ` x5px7 ` 1qpx8 ` 1q

f7 “ x3x9

f8 “ x9 ` x10 ` x9x10

f9 “ x2pGe ` 1qLe

f10 “ px2Lem ` Le ` x2LemLeqpGe ` 1q

The steady-states are the algebraic variety of the set

 

f1 ` x1, . . . , f10 ` x10

(

.

We can now use computational algebraic tools to analyze it.
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4. Reverse-engineering Boolean functions

Consider an unknown Boolean function f : F3
2 Ñ F2 satisfying:

xyz 111 000 110
f px , y , zq 0 0 1

We encode this data as

D “
 

ps1, t1q, ps2, t2q, ps3, t3q
(

“
 

p111, 0q, p000, 0q, p110, 1q
(

.

For each pair with different outputs, we get a pseudomonomial:

pps1, s3q “ z ´ psignps33 ´ s13qq “ z ` 1, pps2, s3q “ px ´ 1qpy ´ 1q.

The ideal of signed non-disposable sets for D is

J∆c
D
“

@

pps1, s3q, pps2, s3q
D

“
@

z ` 1, px ´ 1qpy ´ 1q
D

.

We compute the primary decomposition of J∆c
D

:

R = ZZ/3[x,y,z];

J_nonDisp = ideal(z+1, (x-1)*(y-1));

primaryDecomposition J_nonDisp

Output: {ideal (z + 1, y - 1), ideal (z + 1, x - 1)}

Primary decomposition: J∆c
D
“

@

x ´ 1, z ` 1
D

X xy ´ 1, z ` 1y.

Signed min-sets: tx , zu and ty , zu.
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4. Reverse-engineering Boolean functions

Consider an unknown Boolean function f : F3
2 Ñ F2 satisfying:

xyz 111 000 110
f px , y , zq 0 0 1

Any such function must depend on (at least) tx , zu or on ty , zu.

Theorem

The ideal of signed non-disposable sets is the ideal in F3rx1, . . . , xns defined by

J∆c
D
“

@

ppsi , sj q | i ă j , ti ‰ tj
D

.

But what if we want to find all such functions?

The model space is a coset of the vanishing ideal:

modpDq “ f ` I “
 

f ` h | h P I
(

.
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4. Pseudomonomials
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4. Algebraic systems biology at Univ. Florida (Reinhard Laubenbacher)
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4. Boolean models of molecular networks

Research goals and open-ended questions

Key idea

What does the polynomial algebra tell us about the dynamics of the algebraic model?

Given a gene regulatory network, how can we model it with polynomials?

How we can determine whether are there only fixed points?

How we we reduce a large model while perserving its key features? (e.g., fixed points,
limit cycles, etc.)

How can we characterize stability of the dynamics of an algebraic model?

How can we reverse-engineer a model given partial data?

What can we say about the dynamics if we restrict to a particular class of functions?

How does the update order (synchronous, asynchronous, block-sequential) determine
the dynamics?
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4. Boolean models of molecular networks
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4. Boolean models of molecular networks
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A. Fauré, A. Naldi, C. Chaouiya, and D. Thieffry. Dynamical analysis of a generic Boolean model for
the control of the mammalian cell cycle. Bioinformatics, 22(14):e124–e131, 2006.

A. Jenkins and M. Macauley. Bistability and asynchrony in a Boolean model of the l-arabinose
operon in Escherichia coli. Bull. Math Biol., 79(8):1778–1795, 2017.

S. Kauffman, C. Peterson, B. Samuelsson, and C. Troein. Random Boolean network models and the
yeast transcriptional network. Proc. Natl. Acad. Sci., 100(25):14796–14799, 2003.

L. Mendoza, D. Thieffry, and E. Alvarez-Buylla. Genetic control of flower morphogenesis in
Arabidopsis thaliana: a logical analysis. Bioinformatics, 15(7):593–606, 1999.

B. Stigler and H. Chamberlin. A regulatory network modeled from wild-type gene expression data
guides functional predictions in caenorhabditis elegans development. BMC Syst. Biol., 6(1):77, 2012.

A. Veliz-Cuba and B. Stigler. Boolean models can explain bistability in the lac operon. J. Comp.
Biol., 18(6):783–794, 2011.

M. Macauley (Clemson) What is Algebraic Biology? Algebraic Biology 38 / 39

mailto:macaule@clemson.edu


4. Boolean models of molecular networks
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