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Overview

In biochemistry, 2+ species, or “reactants” can react if they come toegether and collide.

Alternatively, one species can degrade.

More is needed, though: correct orientation, enough energy, etc.

Examples

CH4 ` 2O2 ÝÑ CO2 ` 2H2O (burning of methane)

H` ` OH´ ÝÑ H2O

unfolded protein ÝÑ folded protein

2SO2 ` O2 ÝÝáâÝÝ 2SO3

H2O ` CO2 ÝÝáâÝÝ H2CO3 (carbonic acid synthesis)

O3 ÝÑ O2 ` O

2O3 ÝÑ 3O2
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Mass-action kinetics

Classification of reactions:

A ÝÑ P: “uni-molecular”

A` B ÝÑ P: “bi-molecular”

A` B ` C ÝÑ P: “tri-molecular”

Law of mass-action kinetics

A reaction rate is proportional to the probability of collision of reactants involved.

The probability of collisions is proportional to the concentration of each reactant R, denoted
rRs.

If x is proportional to y , then this means that they differ by a constant k, i.e.,

x “ ky .

If x is proportional to y and z, then for some constant k,

x “ kyz.
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Mass-action kinetics

Law of mass-action kinetics

A reaction rate is proportional to the concentrations of the the reactants.

ODE model

A
k
ÝÑ P:

drPs

dt
“ krAs

A
k
ÝÑ P ` Q:

drPs

dt
“ krAs

A` B
k
ÝÑ P:

drPs

dt
“ krAsrBs

2A
k
ÝÑ P:

drPs

dt
“ krAs2

A` B
k1
ÝáâÝ
k2

P:
drPs

dt
“ k1rAsrBs ´ k2rPs
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An example

Consider the following chemical reaction network:

A` B
k1
ÝáâÝ
k2

C , A
k3
ÝÑ 2B

Let x1ptq, x2ptq, and x3ptq denote the concentrations of A, B, and C . Then we get the
system

dx1

dt
“ ´k1x1x2 ` k2x3 ´ k3x1

dx2

dt
“ ´k1x1x2 ` k2x3 ` 2k3x1

dx3

dt
“ k1x1x2 ´ k2x3.

To find the steady-states, set each x 1i “ 0 and solve the system.

This can be found by computing a Gröbner basis of the ideal

I “
`

´ k1x1x2 ` k2x3 ´ k3x1, ´k1x1x2 ` k2x3 ` 2k3x1, k1x1x2 ´ k2x3

˘

.
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An example
Consider the following chemical reaction network:

A` B
k1
ÝáâÝ
k2

C , A
k3
ÝÑ 2B,

and the resulting system of nonlinear ODEs:

dx1

dt
“ ´k1x1x2 ` k2x3 ´ k3x1

dx2

dt
“ ´k1x1x2 ` k2x3 ` 2k3x1

dx3

dt
“ k1x1x2 ´ k2x3.

Questions

Does the system have a positive or non-negative equilibrium?

Does the system have multiple positive equlibria?

Does the system have a stable positive equillbrium?

Does the system have an unstable positive equillbrium?

Do all positive species concentrations admit a positive cyclic composition trajectory?

How do the answers to these questions depend on the rate constants?
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Mass-action kinetics

Enzymes are proteins that catalyze reactions (up to 1012-fold!)

An example

Consider the following chemical reaction

E ` S
k1
ÝáâÝ
k2

ES
k3
ÝÑ E ` P

E “ enzyme, S “ substrate, ES “ enzyme-substrate complex, and P “ product.

$

’

’

’

’

’

&

’

’

’

’

’

%

drESs

dt
“ k1rE srSs ´ pk2 ` k3qrESs

drPs

dt
“ k3rESs

E0 “ rE s ` rESs, E0 “ initial enzyme concentration

Assumptions

E0 is constant.

Enzyme-substrate complex reaches equilibrium much earlier than the product does, so
drESs

dt
« 0.
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Mass-action kinetics

Goal

Write the differential equation
drPs

dt
“ k3rESs in terms of rSs, not rESs.

Since
drESs

dt
« 0, we can simplify the ODE for rESs:

drESs

dt
“ k1rE srSs ´ pk2 ` k3qrESs “ 0 .

Upon solving for rE s, we get

rE s “
pk2 ` k3qrESs

k1rSs
.

Plugging this into E0 “ rE s ` rESs and solving for rESs:

rESs “
E0rSs

k2`k3
k1

` rSs
.

Alas, we can write
drPs

dt
“ k3rESs “

k3E0rSs
k2`k3
k1

` rSs
“

VmaxrSs

Km ` rSs
.
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Michaelis–Menten equation

Recall the following chemical reaction:

E ` S
k1
ÝáâÝ
k2

ES
k3
ÝÑ E ` P

E “ enzyme, S “ substrate, ES “ enzyme-substrate complex, and P “ product.

Definition

The Michaelis–Menten equation is one of the best-known models of enzyme kinetics.

drPs

dt
“

VmaxrSs

Km ` rSs
looooomooooon

f prSsq

, where Vmax “ k3E0, and Km “
k2 ` k3

k1

Remarks

The “reaction rate”, f prSsq, is a strictly increasing function of rSs.

lim
rSsÑ8

f prSsq “ Vmax, (biologically, the maximum reaction rate)

f pKmq “
1
2
Vmax.

The reaction rate f prSsq is proportional to E0.
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Michaelis–Menten equation

Recall the following chemical reaction:

E ` S
k2
ÝáâÝ
k1

ES
k3
ÝÑ E ` P

E “ enzyme, S “ substrate, ES “ enzyme-substrate complex, and P “ product.

Further assumptions

Substrate concentration is conserved: S0 “ rSs ` rESs ` rPs.

E0 ! S0, so rESs ! rSs and rPs.

Together, this means S0 « rSs ` rPs. Taking d
dt

of both sides yields

drSs

dt
“ ´

drPs

dt
“ ´

VmaxrSs

Km ` rSs
.

Usually, Vmax, Km, and S0 are known quanities. This is now something we can easily solve,
graph, analyze, etc.
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Multi-molecule binding

Consider a reaction where n molecules of a substrate S react with an enzyme E :

E ` nS
k1
ÝáâÝ
k2

ESn
k3
ÝÑ E ` P

The enzyme-substrate complex here is ESn. By mass-action kinetics,

$

’

’

’

’

’

&

’

’

’

’

’

%

drESns

dt
“ k1rE srSs

n ´ pk2 ` k3qrESns

drPs

dt
“ k3rESns

E0 “ rE s ` rESns, E0 “ initial enzyme concentration

As before, assume rESns reaches equilibrium much quicker than rPs and rSs:

drESns

dt
“ 0 ùñ rE s “

pk2 ` k3qrESns

k1rSsn
.

Plugging this into E0 “ rE s ` rESns and solving for rESns yields

rESns “
E0rSsn

k2`k3
k1

` rSsn
ùñ

drPs

dt
“

VmaxrSsn

Km ` rSsn
.
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Multi-molecule binding

Hill equation

Given the chemical reaction
E ` nS

k2
ÝáâÝ
k1

ESn
k3
ÝÑ E ` P

we derived the following ODE involving rPs and rSs:

drPs

dt
“

VmaxrSsn

Km ` rSsn
looooomooooon

f prSsq

, where Vmax “ k3E0, and Km “
k2 ` k3

k1

This is called the Hill equation with Hill coefficient n.

Remarks

The “reaction rate”, f prSsq, is a strictly increasing function of rSs.

lim
rSsÑ8

f prSsq “ Vmax, (biologically, the maximum reaction rate)

f pK
1{n
m q “ 1

2
Vmax.

The reaction rate f prSsq is proportional to E0.

n “ 1 is just the Michaelis–Menden equation.
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Hill equations
The following shows several “Hill functions” y “

tn

1` tn
, for various values of n.
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Michaelis–Menten variants

We just saw an equation for where 1 molecule of a substrate reacts with an enzyme:

E ` S
k1
ÝáâÝ
k2

ES
k3
ÝÑ E ` P, Solution:

drPs

dt
“

VmaxrSs

Km ` rSs
.

Suppose two substrates compete for the same enzyme:

E ` S
p1
é
p2

ES
p3
ÝÑ P ` E

E ` T
q1
é
q2

ET
q3
ÝÑ Q ` E

E0 “ rE s ` rESs ` rET s.

Exercise (HW): Solve for
drPs

dt
and

drQs

dt
.

Question

How does the effects of the competition affect the dynamics of the system?
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Michaelis–Menten variants

We just saw an equation for where 2 molecules of a substrate reacts with an enzyme:

E ` 2S
k1
ÝáâÝ
k2

ES2
k3
ÝÑ E ` P, Solution:

drPs

dt
“

VmaxrSs2

Km ` rSs2
.

But what if the binding is sequential?

E ` S
k1
é
k2

ES ` S
k3
é
k4

ES2
k5
ÝÑ P ` E .

This is really two separate reactions:

E ` S
k1
é
k2

ES , ES ` S
k3
é
k4

ES2
k5
ÝÑ P ` E .

Question

When does this system become roughly the same as the Hill equation with coefficient n “ 2?
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For more infomation
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