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Inferring gene regulatory networks

The inference of gene regulatory networks (GRNs) is an important and challenging problem
in systems biology.

Expression data can be obtained from tools such as DNA microarrays (old) or RNA-Seq.

Once the data is obtained, the problem becomes:

What is the wiring diagram?

There are a number of approaches to answer this, such as:

Correlation networks

Regression-based methods

Information theoretical scores (mutual information)

Gaussian graphical models

Bayesian networks (classic and dynamic)

Differential equation methods

Algebraic methods

This last technique will be the focus of this section.

M. Macauley (Clemson) The network inference problem Algebraic Biology 2 / 48

mailto:macaule@clemson.edu


Inferring gene regulatory networks

The following papers survey existing techniques and software for inferring biological networks.

Huynh-Thu, V. A., & Sanguinetti, G. (2019). Gene regulatory network inference: an
introductory survey. Gene regulatory networks: Methods and protocols, 1-23.

Saint-Antoine, M. M., & Singh, A. (2020). Network inference in systems biology:
recent developments, challenges, and applications. Curr. Opin. Biotechnol. 63, 89-98.

Pušnik, Ž., Mraz, M., Zimic, N., & Moškon, M. (2022). Review and assessment of
Boolean approaches for inference of gene regulatory networks. Heliyon, 8(8), e10222.

The approach in this lecture will be to use computational algebra.

The data is encoded algebraically by squarefree monomial ideals, which can be described
combinatorially by simplicial complexes.

The mathematics behind the scenes is called Stanley–Reisner theory.

Francisco, C. A., Mermin, J., & Schweig, J. (2014). A survey of Stanley–Reisner theory.
In Connections Between Algebra, Combinatorics, and Geometry, pp. 209-234. Springer
New York.
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Inferring gene regulatory networks

The questions of which variables depend on which others is inherently algebraic.

The unsigned wiring diagram can be inferred using Stanley–Reisner theory.

Jarrah, A. S., Laubenbacher, R., Stigler, B., & Stillman, M. (2007). Reverse-engineering
of polynomial dynamical systems. Adv. Appl. Math., 39(4), 477-489.

This was later extended to signed wiring diagrams.

Veliz-Cuba, A. (2012). An algebraic approach to reverse engineering finite dynamical
systems arising from biology. SIAM J. Appl. Dyn. Syst., 11(1), 31-48.

Veliz-Cuba, A., Newsome-Slade, V., & Dimitrova, E. S. (2024). A unified approach to
reverse engineering and data selection for unique network identification. SIAM J. Appl.
Dyn. Syst. 23(1), 592-615.

The following generalizes the previous approaches to when the data is no longer discretized.

Harrington, H. A., Stillman, M., & Veliz-Cuba, A. (2024). Algebraic network
reconstruction of discrete dynamical systems. Adv. Appl. Math., 161, 102760.
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Inferring wiring diagrams of Boolean models

Suppose a Boolean model (f1, f2, f3) has the following (partial) state space.

001 101 111 110 010 000 100 011

Main question

What are the possible wiring digrams?

For example, given the following data, which variables must depend on which variables?

x 0 0 1 1 0 0 1 1
y 0 1 0 1 0 1 0 1
z 0 0 0 0 1 1 1 1

f1(x, y , z) ? 0 ? 0 1 ? 1 1
f2(x, y , z) ? 0 ? 1 0 ? 1 1
f3(x, y , z) ? 0 ? 0 1 ? 1 0

Note that we can treat each function f1, f2, f3 separately.

First question

What are the possible variable dependencies of f : Fn
2 → F2, given partial information?
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Inferring wiring diagrams of a single Boolean function
Suppose we have an unknown Boolean function fi : F3

2 → F2 that satisfies:

fi (1, 1, 1) = 0, fi (0, 0, 0) = 0, fi (1, 1, 0) = 1.

In other words, its truth table looks like

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

Goals

1. Reverse engineering the wiring diagram: Which sets of variables can fi depend on?

2. Reverse engineering the model space: Characterize all functions that “fit this data”.

3. Model selection: What is the “best fit” function?

We’ll study the first question in this lecture.

Recall how different types of interactions are indicated in the wiring diagram:

fj = xi ∧ xk

xi xj

“xi activates xj”

fj = xi ∧ xk

xi xj

“xi inhibits xj”

fj = xi + xk

xi xj

“xi affects xj positively & negatively”
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Unate functions
Consider the following unknown Boolean function:

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

There are 28 = 256 truth tables, and of these, 28−3 = 32 fit this data.

Not all of these functions are biologically meaningful.

Definition

A Boolean function f : Fn
2 → F2 is unate if no variable xi and its negation xi both appear.

Examples

Conjunctions: f = xi1 ∧ · · · ∧ xik .

Disjunctions: f = xi1 ∨ · · · ∨ xik .

AND-NOT functions: f = x ∧ y ∧ z.

OR-NOT functions: f = x ∨ y ∨ z.

Others: f = x ∧ (y ∨ z).

Fact

Most functions that appear in models of molecular networks are unate.
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Min-sets

Recall the following unknown Boolean function:

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

Of the 256 Boolean functions on 3 variables, 28−3 = 32 fit this data, and only 4 are unate:

x1 ∧ x3, x2 ∧ x3, x1 ∧ x2 ∧ x3, (x1 ∨ x2) ∧ x3.

The wiring diagrams of these functions are shown below, expressed several different ways.

x1 x2 x3

xi

(1, 0,−1)

{x1, x3}

x1 x2 x3

xi

(0, 1,−1)

{x2, x3}

x1 x2 x3

xi

(1, 1,−1)

{x1, x2, x3}

x1 x2 x3

xi

(1, 1,−1)

{x1, x2, x3}

We will call the minimal wiring diagrams (e.g., the first two) min-sets. If we retain the signs
of the interactions, we call them signed min-sets.
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Finding min-sets using computational algebra

Figure: Image courtesy of Alan Veliz-Cuba.
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Monomials

We will learn how to reverse-engineer wirgram diagrams using computational algebra.

We will encode the partial data using ideals of polynomials rings generated by square-free
monomials.

There is a beautiful relationship between square-free monomial ideals and a combinatoral
object called a simplicial complex.

The min-sets can be found by taking the primary decomposition of the ideal.

Notation

Every monomial can be written as cxα, where xα := xα1
1 · · · x

αn
n and

α = (α1, . . . , αn) ∈ Zn
≥0.

Example

Consider the following polynomial in F3[x1, x2, x3, x4], written several different ways:

f = x3
1 x2x

2
4 + 2x1x

5
4 = x3

1 x
1
2 x

0
3 x

2
4 + 2x1

1 x
0
2 x

0
3 x

5
4 = x(3,1,0,2) + 2x(1,0,0,5).
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Monomial ideals

Definition

A monomial ideal I ≤ F[x1, . . . , xn] is an ideal generated by monomials.

Proposition (exercise)

Let M(I ) be the set of monomials in I . If I is a monomial ideal, then I = 〈M(I )〉.

Monomial ideals can be visualized by a staircase diagram. Here is an example for the
monomial ideal I = 〈y3, xy2, x3y2, x4〉.

x4

x3y2xy2

y3

x i

y j

Question: Are any of these monomials not needed to generate I?
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Square-free monomial ideals

Definition

A monomial xα := xα1
1 · · · x

αn
n is square-free if each αi ∈ {0, 1}.

A square-free monomial ideal is any ideal generated by square-free monomials.

The exponent vector α = (α1, . . . , αn) of a square-free monomial xα canonically determines
a subset of [n] = {1, . . . , n}.

Notations

Given xα, we may speak of α as a subset of [n] rather than a vector.

We will write subsets as strings, e.g., xz for {x , z}.

Key property

Let I be a square-free monomial ideal of F[x1 . . . , xn], and α, β ⊆ [n]. Then

xα ∈ I and xβ ∈ I =⇒ xα∪β ∈ I ,

xα 6∈ I and xβ 6∈ I =⇒ xα∩β 6∈ I .
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Square-free monomial ideals

Consider the ideal I = 〈ac, ad , ae, bcd , be〉 ⊆ F[a, b, c, d , e].

The squarefree monomials in I are blue. Those not in I are red.

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅
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Simplicial complexes

Definition

A simplicial complex over a finite set X is a collection ∆ of subsets of X , closed under taking
subsets. That is,

β ∈ ∆ and α ⊂ β =⇒ α ∈ ∆.

Elements in ∆ are called simplices or faces.

Example 6

X = {a, b, c, d , e, f }

∆ = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef } a b c

d

e

f

A k-dimensional face (size-(k + 1) subset) is called a k-face. For small k, we also say that a:

0-face is a vertex, or node,

1-face is an edge,

2-face is a triangle,

3-face is a (solid) triangular pyramid.
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Simplicial complexes

We will often be interested in the non-faces of a simplicial complex, i.e., ∆c := 2X \∆.

Key property

Let ∆ be a simplicial complex.

(i) Faces of ∆ are closed under intersection: α, β ∈ ∆ ⇒ α ∩ β ∈ ∆.

(ii) Non-faces of ∆ are closed under unions: α, β ∈ ∆c ⇒ α ∪ β ∈ ∆c .

Remark

∆ is determined by its maximal faces.

∆c is determined by its minimal non-faces.

Example 6 (continued)

14 faces in ∆ = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef }.
Maximal faces: a, bc, cde, df , ef .

50 non-faces in ∆c .

Minimal non-faces: ab, ac, ad , ae, af , bd , be, bf , cf , def .

a b c

d

e

f
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Simplicial complexes

Consider the simplicial complex ∆:
a b

c

d

e

The faces in ∆ are red. The non-faces are blue.

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅
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Example 3a

Let X = {x , y , z}, and consider the following simplicial complex ∆ and ideal in F[x , y , z].

Faces: ∆ = {∅, x , y , z, xz} (maximal: y , xz)

Non-faces: ∆c = {xy , yz, xyz} (minimal: xy , yz)

I∆c = 〈xy , yz〉

=
{

xy · h1(x , y , z) + yz · h2(x , y , z)︸ ︷︷ ︸
y
(
x·h1(x,y,z)+z·h2(x,y,z)

)
∈〈y〉∩〈x,z〉

: h1, h2 ∈ R
}

= 〈y〉 ∩ 〈x , z〉

“primary decomposition”

y

zx

xyz

xy xz yz

x y z

∅

Faces ∆

Monomials not in I∆c

xyz

xy xz yz

x y z

∅

Non-faces ∆c

Monomials in I∆c

∅

z y x

yz xz xy

xyz

Complements of faces in ∆

Primary components are darker
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Alexander duality
We’ve seen the following bijection, called Alexander duality:

Every square-free monomial ideal I defines a canonical simplicial complex, ∆I c .

Every simplicial complex ∆ defines a canonical square-free monomial ideal I∆c .

Example 6 (contin.): Consider the square-free monomial ideal I in F[a, b, c, d , e, f ]:

I = 〈ab, ac, ad , ae, af , bd , be, bf , cf , def 〉.

The monomials not in I are closed under intersection, and so they form a simplicial complex

X = {a, b, c, d , e, f }

∆I c = {∅, a, b, c, d , e, f , bc, cd , ce, de, cde, df , ef }

Minimal non-faces: ab, ac, ad , ae, af , bd , be, bf , cf , def

a b c

d

e

f

Note that ∆I c is determined by its maximal faces: a, bc, cde, df , ef .

Complements of max’l faces: bcdef , adef , abf , abce, abcd , so the primary decomposion is

I = 〈b, c, d , e, f 〉 ∩ 〈a, d , e, f 〉 ∩ 〈a, b, f 〉 ∩ 〈a, b, c, e〉 ∩ 〈a, b, c, d〉;
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Summary so far

Key property

A square-free monomial ideal I is completely determined by the subsets α for which xα ∈ I .

If α ⊆ β and xα ∈ I , then xβ ∈ I .

If α ⊆ β and xβ 6∈ I , then xα 6∈ I .

In other words,

(i) As subsets, exponents of square-free monomials in I are closed under unions.

(ii) As subsets, exponents of square-free monomials not in I are closed under intersections.

Key ideal

We can describe a square-free monomial ideal I combinatorially as a collection of subsets,
closed under intersections, and vice-versa.

These subsets have two interpretations, one algebraic and one combinatorial.

algebraically: the monomials xα not in I ;

combinatorially: the faces α of a simplicial complex, that we will denote by ∆I c .
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Alexander duality, formalized

Definition

Given a squarefree monomial ideal I in F[x1, . . . , xn], define the simplicial complex

∆I c :=
{
α | xα 6∈ I

}
.

Given a simplicial complex ∆, define a square-free monomial ideal

I∆c :=
〈
xα | α 6∈ ∆

〉
.

This is called the Stanley-Reisner ideal of ∆.

Theorem

The correspondence I 7→ ∆I c and ∆ 7→ I∆c is a bijection between:

(i) simplicial complexes on [n] = {1, . . . , n},
(ii) square-free monomial ideals in F[x1, . . . , xn].

This correspondence is called Alexander duality.
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Primary decomposition (motivation)

In grade-school, everybody learns how to factor integers into products of primes, e.g.,

6 = 2 · 3, and 45 = 32 · 5.

Ideals in the ring R = Z behave similarly.

Since Z is a principal ideal domain (PID), every ideal has the form I = 〈a〉 for some a ∈ Z.

Every ideal I can be written as an intersection of primary ideals. For example,

〈6〉 = 〈2〉 ∩ 〈3〉, and 〈45〉 = 〈9〉 ∩ 〈5〉.

This is called a primary decomposition of the ideal.

Note that there is no way to further break up 〈9〉 into an expression involving 〈3〉.

Ideals of the form I = 〈p〉 for a prime p are called prime ideals and those of the form
I = 〈pk 〉 are called primary ideals.

These concepts and this construction holds in a much larger class of commutative rings than
just Z.
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Primary decomposition

Defintion

Let I be an ideal of a commutative ring R.

I is a prime ideal if fg ∈ I implies either f ∈ I or g ∈ I .

I is a primary ideal if fg ∈ I implies either f ∈ I or gk ∈ I for some k ∈ N.

Example

Consider the ring R = Z.

The prime ideals (excluding 0 and Z) are of the form I = 〈p〉 for some prime p.

The primary ideals (excluding 0 and Z) are of the form I = 〈pk 〉 for k ∈ N.

The following theorem can be thought of as a way to “factor” ideals in polynomial rings,
much like how integers can be factored into primes.

Lasker-Noether Theorem

Every ideal I of F[x1, . . . , xn] can be written as I =
r⋂

i=1

pi , where pi is a primary ideal. We

call this a primary decomposition of I . The pi are called primary components.

In general, primary decompositions are hard to compute and need not be unique. But for
square-free monomial ideals, they have a simple combinatorial description.
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Ideals and varieties
Definition

Given an ideal I ≤ F[x1, . . . , xn], the variety of I is its set of common zeros:

V (I ) := {x ∈ Fn : f (x) = 0 for all f ∈ I}.

The ideal generated by a variety V ⊆ Fn is

I (V ) :=
{
f ∈ F[x1, . . . , xn] | f (v) = 0, ∀v ∈ V

}
.

Proposition

For any two varieties V1 and V2 in Fn,

I (V1 ∪ V2) = I (V1) ∩ I (V2).

For any α ⊆ [n], define pα = 〈xi : i ∈ α〉 and pα = p[n]−α = 〈xi : i 6∈ α〉. Both are prime.

Theorem

Let ∆ be a simplicial complex over [n]. The Stanley-Reisner ideal of ∆ in R = F[x1, . . . , xn] is

I∆c =
⋂
α∈∆

pα =
⋂
α∈∆

maximal

pα.

M. Macauley (Clemson) The network inference problem Algebraic Biology 23 / 48

mailto:macaule@clemson.edu


A summary of Stanley-Reisner theory

X

∅

monomials xα∈ I
(ideal)

monomials xα 6∈ I
(simplicial complex)

set complement

set complement

•
••

•
•generatorfacet

∅

X

prime ideals pα 6⊇ I

prime ideals pα⊇ I

•
••

•
•primary

component

Alexander duality are the bijections I 7−→ ∆I c and ∆ 7→ I∆c .

The primary decomposition of a square-free monomial ideal is: I∆c =
⋂
α∈∆

pα =
⋂
α∈∆

maximal

pα.
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Example 5, revisited

Consider the simplicial complex ∆:
a b

c

d

e

The ideal is I∆c = 〈ac, ad , ae, bcd , be〉 = 〈c, d , e〉 ∩ 〈a, d , e〉 ∩ 〈a, c, e〉 ∩ 〈a, b〉.

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅
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Computing the primary decomposition

Example 3a (revisted)

Faces: ∆ = {∅, x , y , z, xz} (maximal: y , xz)

Non-faces: ∆c = {xy , yz, xyz} (minimal: xy , yz)

I∆c = 〈xy , yz〉 = 〈x , z〉 ∩ 〈y〉

y

zx

The primary decomposition of I∆c is generated by the complements of the 5 faces in ∆.

This is not the set complement of ∆, i.e., the 3 non-faces ∆c = {xy , yz, xyz}, but rather,{
∅, x , z, y , xz

}
=
{
xyz, yz, xy , xz, y

}
.

By the previous theorem, the primary decomposition of I∆c is

I∆c = 〈xy , yz〉 =
⋂
α∈∆

pα = p∅ ∩ px ∩ pz ∩ py ∩ pxz

= pxyz ∩ pyz ∩ pxy ∩ pxz ∩ py

= 〈x , y , z〉 ∩ 〈y , z〉 ∩ 〈x , y〉︸ ︷︷ ︸
unnecessary

∩〈x , z〉 ∩ 〈y〉

= 〈x , z〉 ∩ 〈y〉 =
⋂
α∈∆

maximal

pα.

xyz

xy xz yz

x y z

∅
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Applying Stanley-Reisner theory to algebraic models

Now, we are ready to use Stanley-Reisner theory to infer wiring diagrams.

Here is a summary of the process:

1. Consider every pair of input vectors that give a different output.

2. For each pair, take the monomial xα, where α ⊆ [n] is the set where the entries differ.

3. These generate an ideal. The primary decomposition encodes all minimal wiring
diagrams.

Simplification

We can consider each coordinate independently.

This is best seen with an example. Consider the following Boolean model f = (f1, f2, f3).

f1 = x2

f2 = x2 ∧ x3

f3 = x1 ∨ x2 x1

x2

x3

=
x1

x2

x3

⋃
x1

x2

x3

⋃
x1

x2

x3

Thus, we will consider a function f : Fn → F with partial data, and attempt to infer its
wiring diagram.
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Data and model spaces

Let f : Fn → F be a function, where F = Fp .

Definition

Consider a set
D =

{
(s1, t1), . . . , (sm, tm)

}
, si ∈ Fn, ti ∈ F

of input-output pairs, all si distinct. We call such a set data, and say that f fits the data D if

f (si ) = f (si1, . . . , sin) = ti , for all i = 1, . . . ,m.

The model space of D is the set Mod(D) of all functions that fit the data, i.e.,

Mod(D) =
{
f : Fn → F | f (si ) = ti for all i = 1, . . . ,m

}
.

For any f in Mod(D), the support of f , denoted supp(f ), is the set of variables on which f
depends.

Under a slight abuse of notation, we can think of the support as a subset of {x1, . . . , xn} or
as a subset α ⊆ [n] = {1, . . . , n}.

Either way, we can write supp(f ) as a string.
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Disposable and non-disposable sets

Definition

With respect to a set D of data, a set α ⊆ [n] is:

disposable if there is some f ∈ Mod(D) for which supp(f ) ∩ α = ∅.
otherwise, it is non-disposable.

Remark

Let D be a set of data, and α, β ⊆ [n].

(i) If α and β are disposable with respect to D, then so is α ∩ β.

(ii) If α and β are non-disposable with respect to D, then so is α ∪ β.

Key point

Let D be a set of data, and α, β ⊆ [n].

(i) The disposable sets form a simplicial complex ∆D.

(ii) The non-disposable sets generate an ideal

I∆c
D

=
〈
α | α is non-disposable

〉
⊆ F[x1, . . . , xn],

called the ideal of non-disposable sets.
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Feasible, infeasible, and min-sets

Definition

With respect to a set D of data, a set α ⊆ [n] is:

feasible if there is there is some f ∈ Mod(D) for which supp(f ) ⊆ α.

otherwise, it is infeasible.

Remarks

A set α is feasible iff its complement α := [n]− α is disposable.

These are not opposite concepts; α can be both feasible and disposable, or neither.

Key point

Let D be a set of data, and α, β ⊆ [n].

(i) If α and β are feasible with respect to D, then so is α ∪ β.

(ii) If α and β are infeasible with respect to D, then so is α ∩ β.

Definition

A minimal feasible set α ⊆ [n] of D is called a min-set. Equivalently, its complement
α := [n]− α is a maximal disposable set.
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A summary of applying Stanley-Reisner theory to network inference

X

∅

non-disposable

(ideal)

disposable

(simplicial complex)

set complement

set complement

•
••

•
•generatorfacet

∅

X

infeasible

feasible

•
••

•
•min-set

Alexander duality are the bijections ID 7−→ ∆I cD
and ∆D 7→ I∆c

D
.

The primary decomposition of the ideal of non-disposable sets is: I∆c
D

=
⋂
α is a

min-set

pα
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Extracting non-disposable sets from the data

Theorem (Alexander duality)

There is a bijective correspondence between:

the simplicial complex ∆D of disposable sets,

the square-free monomial ideal I∆c
D

in F[x1, . . . , xn] of non-disposable sets.

For each pair (s, t), (s′, t′) ∈ D, the coordinates in which the inputs differ can be encoded by
the monomial

m(s, s′) :=
∏
si 6=s′i

xi .

By construction, if t 6= t′, then supp(m(s, s′)) must be non-disposable.

Theorem

The ideal of non-disposable sets is the ideal in F2[x1, . . . , xn] defined by

I∆c
D

=
〈
m(s, s′) | t 6= t′

〉
=

⋂
α∈∆c

D
maximal

pα =
⋂
α is a

min-set

pα.

That is, the generators of the primary components of I∆c
D

are the min-sets of D.
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Example 3a (continued)

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 101 000 110
f (x , y , z) 0 0 1

Using our notation, the data D, grouped by output value, is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(101, 0), (000, 0), (110, 1)
}
.

Since t1 = t2 6= t3, we compute m(s1, s3) = yz and m(s2, s3) = xy .

xyz

xy xz yz

x y z

∅
Disposable sets ∆c

D
Monomials not in I∆c

xyz

xy xz yz

x y z

∅

Non-disposable sets ∆c
D

Monomials in I∆c
D

∅

z y x

yz xz xy

xyz

Feasible sets of ∆

Min-sets are darker
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Example 3b

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 111 000 110
f (x , y , z) 0 0 1

Using our notation, the data D, grouped by output value, is

D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(111, 0), (000, 0), (110, 1)
}
.

Since t1 = t2 6= t3, we compute m(s1, s3) = z and m(s2, s3) = xy .

xyz

xy xz yz

x y z

∅
Disposable sets ∆c

D
Monomials not in I∆c

xyz

xy xz yz

x y z

∅

Non-disposable sets ∆c
D

Monomials in I∆c
D

∅

z y x

yz xz xy

xyz

Feasible sets of ∆

Min-sets are darker
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Summary so far

The following table summarizes the correspondence between the combinatorial structures in
the network inference problem to Stanley-Reisner theory and Alexander duality.

Inferring wiring diagrams from data Stanley-Reisner theory

Disposable sets of D Faces of the simplicial complex ∆D

Non-disposable sets of D The non-faces, ∆c
D

The ideal 〈m(s, s′) | t 6= t′〉 of The Stanley-Reisner ideal I∆c
D

non-disposable sets

Feasible sets of D Complements of faces of ∆D

Min-sets of D Complements of max’l faces of ∆D
↔ primary components of I∆c

D
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Min-sets over non-Boolean fields

Consider a function f : F5
5 → F5 with the following partial data:

(s1, t1) =
(
01210, 0

)
,

(s2, t2) =
(
01211, 0

)
,

(s3, t3) =
(
01214, 1

)
,

(s4, t4) =
(
30000, 3

)
,

(s5, t5) =
(
11113, 4

)
.

The monomials m(si , sj ) are:

m(s1, s4) = x1x2x3x4,

m(s1, s5) = m(s2, s5) = m(s3, s5) = x1x3x5,

m(s2, s4) = m(s3, s4) = m(s4, s5) = x1x2x3x4x5,

m(s1, s3) = m(s2, s3) = x5.

The ideal of non-disposable sets in F2[x1, x2, x3, x4, x5] is

I∆c
D

= 〈m(si , sj ) | ti 6= tj 〉 = 〈x1x2x3x4x5, x1x3x5, x1x2x3x4, x5〉 = 〈x1x2x3x4, x5〉.

We can compute the primary decomposition in Macaulay2:

R = QQ[x1,x2,x3,x4,x5];

I_nonDisp = ideal(x5, x1*x2*x3*x4);

primaryDecomposition I_nonDisp

Output: {ideal (x1, x5), ideal(x2, x5), ideal(x3, x5), ideal(x4, x5)}

Primary decomposition: I∆c
D

= 〈x1, x5〉 ∩ 〈x2, x5〉 ∩ 〈x3, x5〉 ∩ 〈x4, x5〉.

Unsigned min-sets: {x1, x5}, {x2, x5}, {x3, x5}, {x4, x5}.
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Min-sets over non-Boolean fields

Suppose the ideal of non-disposable sets is I∆c
D

= 〈abcd , e〉.

abcde

abcd abce abde acde bcde

abc abd abe acd ace ade bcd bce bde cde

ab ac ad ae bc bd be cd ce de

a b c d e

∅

Maximum disposable sets: abc, abd , acd , bcd .

Primary decomposition: I∆c
D

= 〈d , e〉 ∩ 〈c, e〉 ∩ 〈b, e〉 ∩ 〈a, e〉.
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Finding signed min-sets of algebraic models

Consider a set of data (i.e., input-output pairs) with all si distinct:

D =
{

(s1, t1), . . . , (sm, tm)
}
, si ∈ Fn, ti ∈ F.

Last time: For each pair (s, t), (s′, t′) ∈ D, define the monomial m(s, s′) :=
∏

si 6=s′i
xi .

This time: For each coordinate i that s and s′ differ, include:

xi if the interaction is positive: sign(si − s′i ) = sign(ti − t′i ),

xi = xi + 1 if the interaction is negative: sign(si − s′i ) 6= sign(ti − t′i ).

Specifically, define the pseudomonomial

p(s, s′) :=
∏

pos. i

xi
∏

neg. i

xi .

Theorem

The ideal of signed non-disposable sets in F[x1, . . . , xn] is defined by

J∆c
D

=
〈
p(si , sj ) | ti 6= tj

〉
.

The primary components of J∆c
D

give the signed min-sets.
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Example 3a (revisited)

Consider a Boolean function f : F3
2 → F2 with the following partial data:

xyz 111 000 110
f (x , y , z) 0 0 1

The data is D =
{

(s1, t1), (s2, t2), (s3, t3)
}

=
{

(111, 0), (000, 0), (110, 1)
}

.

Note that
p(s1, s3) = z, p(s2, s3) = xy .

The ideal of signed non-disposable sets for D is thus

J∆c
D

=
〈
p(s1, s3), p(s2, s3)

〉
=
〈
z, xy

〉
.

The following Macaulay2 commands compute the primary decomposition of J∆c
D

:

R = ZZ/2[x,y,z];

J_nonDisp = ideal(z+1, x*y);

primaryDecomposition J_nonDisp

Output: {ideal (z + 1, y), ideal (z + 1, x)}

Primary decomposition: J∆c
D

=
〈
x , z + 1

〉
∩ 〈y , z + 1〉.

Signed min-sets: {x , z}, {y , z}.
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Signed min-sets over non-Boolean fields

Let’s compute the pseudomonomials for our previous example of f : F5
5 → F5 with data:

(s1, t1) =
(
01210, 0

)
,

(s2, t2) =
(
01211, 0

)
,

(s3, t3) =
(
01214, 1

)
,

(s4, t4) =
(
30000, 3

)
,

(s5, t5) =
(
11113, 4

)
.

p(s1, s3) = p(s2, s3) = x5,

p(s3, s5) = x1x3 x5,

p(s1, s4) = x1x2 x3 x4,

p(s1, s5) = p(s2, s5) = x1x3x5,

p(s4, s5) = x1x2x3x4x5,

p(s2, s4) = p(s3, s4) = x1x2 x3 x4 x5.

The last three are redundant. The ideal of signed non-disposable sets in F[x1, x2, x3, x4, x5] is

J∆c
D

=
〈
p(si , sj ) | ti 6= tj

〉
= 〈x5, x1x3 x5, x1x2 x3 x4〉.

We can compute the primary decomposition in Macaulay2:

R = QQ[x1,x2,x3,x4,x5];

J_nonDisp = ideal(x5, x1*(x3+1)*(x5+1), x1*(x2+1)*(x3+1)*(x4+1));

primaryDecomposition J_nonDisp

Output: {ideal (x5, x3+1), ideal(x5, x1)}

Primary decomposition: J∆c
D

= 〈x1, x5〉 ∩ 〈x3 + 1, x5〉.

Signed min-sets: {x1, x5}, {x3, x5}.
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Application to a real gene network

Caenorhabditis elegans is a microscopic roundworm and common organism in biology.

It was the first multicellular organism to have its full genome sequenced, and its nervous
system (connectome) completely mapped. The latter consists of just 302 neurons and
≈ 7000 synapses.

In 2012, Stigler & Chamberlin studied a network with 20 genes involved in embryonal
development of C. elegans.

They discretized data from two time series, s1, . . . , s10 and u1, . . . , u10, to 7 states, i.e.,
si , ui ∈ F20

7 .

The ith input state is si and the ith output state is ti = f (si ) = si+1, where f : F20
7 → F20

7 is
the FDS map of an unknown algebraic model over F7. Similarly, vi = f (ui ) = ui+1.
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Time-series data

Note that the 20 points in F20
7 in two time series describe 18 input-output pairs.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

s1 4 6 5 0 3 0 0 0 0 1 0 0 0 1 0 1 0 0 0 0
s2 = t1 3 6 5 0 2 1 1 1 0 0 0 0 1 1 0 0 0 1 0 0
s3 = t2 1 3 1 0 2 1 1 1 0 1 0 0 1 1 0 1 0 1 0 1
s4 = t3 1 3 1 2 2 1 1 1 1 1 0 0 0 1 0 0 0 1 2 1
s5 = t4 0 1 1 2 2 1 1 1 1 1 0 0 1 1 0 1 0 1 2 1
s6 = t5 0 2 1 4 6 4 1 3 1 1 0 0 1 2 0 1 0 1 1 1
s7 = t6 0 3 1 6 5 5 1 4 2 1 0 0 1 1 1 2 1 1 1 0
s8 = t7 1 3 1 4 2 6 1 4 2 3 1 1 3 2 4 4 0 3 3 0
s9 = t8 1 3 1 6 2 5 1 5 1 5 2 5 6 2 5 5 0 4 4 0
s10 =t9 0 2 1 4 2 3 1 3 1 4 1 3 4 2 5 3 1 5 5 2

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15 x16 x17 x18 x19 x20

u1 4 3 3 0 1 0 0 0 1 1 1 0 1 0 0 1 0 0 0 0
u2 = v1 4 0 0 0 0 0 1 0 0 1 1 0 1 2 1 1 0 0 0 0
u3 = v2 5 3 2 0 1 0 0 0 0 1 0 1 0 2 0 1 0 0 0 0
u4 = v3 4 4 3 0 2 0 1 1 1 1 0 1 1 1 0 1 0 0 1 1
u5 = v4 1 2 1 1 2 0 1 1 1 1 0 1 2 0 0 1 0 1 0 1
u6 = v5 2 3 1 2 4 2 2 2 3 1 0 0 2 1 0 1 0 1 1 1
u7 = v6 5 3 1 3 2 2 3 3 5 2 0 1 2 3 1 1 1 1 0 1
u8 = v7 6 5 6 5 4 5 6 4 6 1 0 4 2 2 3 2 1 2 2 0
u9 = v8 3 3 1 4 2 2 4 2 4 3 0 4 5 0 3 2 2 2 4 0
u10 =v9 4 5 4 6 2 3 5 6 2 6 2 6 5 2 6 6 1 6 6 3
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Application to a real gene network

Goal

Reconstruct a wiring diagram for the subnetwork of three genes responsible for body wall
(mesodermal) tissue development.

Gene Variable Muscle Type
hlh-1 x8 skeletal
hnd-1 x18 cardiac

unc-120 x19 cardiac, smooth, skeletal

These genes are known to be regulated by the maternally controlled pal-1 genes.

Though all three regulate a single tissue type in C. elegans, some vertebrates have
homologous transcription factors related to these genes that regulate three different muscle
types.

Understanding their regulatory interactions has implications in human muscle development
and disease.

For each gene j of interest (j = 8, 18, 19), we extract a set Dj of data. For example, the
data for the hlh-1 gene is

D8 = {(s1, t18), (s2, t28), . . . , (s9, t98), (u1, v18), (u2, v28), . . . , (u9, v98)}.
The ideal of non-disposable sets for the hlh-1 gene is

IDc
8

= 〈{m(si , sj ) | ti8 6= tj8} ∪ {m(ui , uj ) | vi8 6= vj8} ∪ {m(si , uj ) | ti8 6= vj8}〉.
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The ideal of non-disposable sets for the hlh-1 gene

IDc
8

= 〈x1x2x4x5x6x7x8x9x13x14, x2x3x5x9x11x13x14, x2x4x6x9x12x13x14, x1x3x9x11x12x13x14,

x1x2x3x5x7x11x12x13x15, x2x3x5x7x11x13x14x15, x1x2x13x16, x1x2x4x6x7x8x9x10x14x15x17,

x1x4x6x7x8x9x10x12x13x14x15x17, x1x2x3x4x5x6x7x8x9x12x13x18, x1x2x3x4x5x6x8x12x14x18,

x1x2x3x5x6x7x8x9x10x11x14x16x18, x1x2x3x5x6x8x10x11x14x15x16x18, x1x2x4x9x19,

x1x4x5x6x7x8x9x13x19, x2x4x5x6x8x14x19, x1x2x4x6x12x13x14x19, x1x4x5x6x8x12x13x14x19,

x1x5x6x7x8x9x13x16x19, x2x4x6x12x13x14x16x19, x1x4x5x7x8x9x10x12x14x15x17x19,

x1x2x3x4x6x12x18x19, x1x2x3x4x13x14x18x19, x4x6x8x9x10x11x12x13x15x16x18x19,

x1x3x4x5x6x7x8x9x11x14x15x16x17x18x19, x1x6x7x8x9x11x12x13x14x15x16x17x18x19,

x1x4x5x6x10x11x12x13x14x15x16x17x18x19, x1x5x8x9x10x11x12x13x14x15x16x17x18x19,

x1x4x5x6x7x8x9x13x15x16x17x20, x1x2x3x4x5x7x8x11x12x13x18x20,

x1x3x5x6x7x8x9x11x14x18x20, x1x2x3x4x5x7x8x9x13x14x18x20,

x1x2x3x5x6x8x11x14x15x18x20, x3x4x5x6x7x8x9x10x13x14x15x17x18x20,

x1x2x3x4x5x6x8x9x12x15x16x17x18x20, x2x4x5x6x8x9x15x16x17x19x20,

x2x3x5x8x9x11x12x14x15x19x20, x1x4x5x6x8x9x15x16x17x19x20, x2x5x7x8x11x12x14x19x20,

x1x3x4x5x6x7x8x11x13x14x16x18x19x20, x2x4x6x8x9x10x11x13x14x15x16x18x19x20,

x4x6x8x10x11x12x13x14x15x16x18x19x20, x1x4x6x7x8x9x10x11x13x14x15x16x17x18x19x20,

x1x4x5x7x9x10x12x13x14x15x16x17x18x19x20, x1x4x7x8x9x10x12x13x14x15x16x17x18x19x20〉.
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Min-sets of the hlh-1 gene

The primary decomposition of IDc
8

consists of 483 primary components (min-sets). That is,

IDc
8

=
483⋂
i=1

pi .

However, it is known experimentally that hlh-1 is controlled by the pal-1 genes (variables
x1, x2, x3).

Therefore, we can disregard all min-sets that involve none of these variables.

This happens to be 481 of them, leaving two candidates for min-sets of hlh-1:

{x2, x3, x8, x18} and {x2, x3, x8, x19}.

There are two possible wiring diagrams at the hlh-1 gene (variable x8):

x8

P

x18

x19

x8

P

x18

x19
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Min-sets of the hnd-1 and unc-120 genes

Applying a similar process for the other two genes gives:

580 min-sets for the hnd-1 gene,

498 min-sets for the unc-120 gene.

As before, these can be drastically reduced by discarding those that do not contain any of
the pal-1 genes (x1, x2, x3).

Then, they are filtered so that they contain (i) as many of the variables for hlh-1, hnd-1,
unc-120 (x8, x18, x19) as possible, and (ii) no other variables. The min-sets are:

hlh-1 (x8) hnd-1 (x18) unc-120 (x19)
{x2, x3, x8, x18} {x2, x8, x18} {x2, x3, x8, x18}
{x2, x3, x8, x19} {x2, x8, x19} {x2, x3, x8, x19}

{x3, x8, x19} {x2, x8, x9, x19}
{x3, x8, x9, x18}

Collapsing the pal-1 variables into a single node P gives the following simplified min-sets:

hlh-1 (x8) hnd-1 (x18) unc-120 (x19)
{P, x8, x18} {P, x8, x18} {P, x8, x18}
{P, x8, x19} {P, x8, x19} {P, x8, x19}
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Minimal wiring diagrams

hlh-1 : x8

P

x18

x19

OR x8

P

x18

x19

hnd-1 : x8

P

x18

x19

OR x8

P

x18

x19

unc-120 : x8

P

x18

x19

OR x8

P

x18

x19
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Min-sets of general discrete dynamical systems

The techniques here can be used for more than just algebraic models.

In (Harrington, et al., 2024), the authors recovered the wiring diagram from sampling data
from the continuous-space dynamical system f : [0, 1]5 → [0, 1]5 defined by

(f1, f2, f3, f4, f5) =
(

x1

(1+x1)(1+x2
2 )
, 1

(1+x1x2)(1+x5)
,

x2
1

(1+x2
1 )(1+x2)

, 1
1+x2

, x1x2
(1+x1)(1+x2)

)
.

They also applied it to two difference equation models of flour beetle populations

Ln+1 = bAn

Pn+1 = (1− µL)Ln

An+1 = (1− µP)Pn + (1− µA)An

Ln+1 = bAne
−cEAAne−cELLn

Pn+1 = (1− µL)Ln

An+1 = Pne
−cPAAn + (1− µA)An

and one of a fish population:

An+1 = φ(kCCn + kDDn + kEEn)

Bn+1 = sBBn

Cn+1 = sCCn

Dn+1 = sDDn

En+1 = sEEn
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