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Inferring Boolean models from partial data

Suppose a Boolean model (f1, f2, f3) has the following (partial) state space (si , si ).

001 101 111 110 010 000 100 011

Main question

What are the possible Boolean models (f1, f2, f3), as polynomials?

This is stronger than what we asked last time: which variables depend on which variables?

x 0 0 1 1 0 0 1 1
y 0 1 0 1 0 1 0 1
z 0 0 0 0 1 1 1 1

f1(x, y , z) ? 0 ? 0 1 ? 1 1
f2(x, y , z) ? 0 ? 1 0 ? 1 1
f3(x, y , z) ? 0 ? 0 1 ? 1 0

As before, we can treat each function f1, f2, f3 separately.

First question

What are the possible functions f : Fn
2 → F2, given partial information?
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A familiar example

Recall the following unknown Boolean function:

x1x2x3 111 110 101 100 011 010 001 000
fi (x) 0 1 ? ? ? ? ? 0

Of the 256 Boolean functions on 3 variables, 28−3 = 32 fit this data, and only 4 are unate:

x1 ∧ x3, x2 ∧ x3, x1 ∧ x2 ∧ x3, (x1 ∨ x2) ∧ x3.

The wiring diagrams of these functions are shown below, expressed several different ways.

x1 x2 x3

xi

(1, 0,−1)

{x1, x3}

x1 x2 x3

xi

(0, 1,−1)

{x2, x3}

x1 x2 x3

xi

(1, 1,−1)

{x1, x2, x3}

x1 x2 x3

xi

(1, 1,−1)

{x1, x2, x3}

This time, we’ll find the actual functions, in polynomial form.
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A familiar example

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

First step: interpolation

Find a single function f : F3
2 → F2 that fits the data.

For each data point si , we’ll construct an r -polynomial that has the following property:

ri (x) =

{
1 x = sj j 6= i

0 x = sj , j 6= i

Once we have these, one such polynomial f (x) we seek will be

f (x) = t1r1(x) + t2r2(x) + t3r3(x).

Note why this works:

f (s1) = t1r1(s1) + t2r2(s1) + t3r3(s1) = t1 · 1 + t2 · 0 + t3 · 0 = t1

f (s2) = t1r1(s2) + t2r2(s2) + t3r3(s2) = t1 · 0 + t2 · 1 + t3 · 0 = t2

f (s3) = t1r1(s3) + t2r2(s3) + t3r3(s3) = t1 · 0 + t2 · 0 + t3 · 1 = t3
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A familiar example: k = 1

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

For each data point si , we’ll construct an r-polynomial, satisfying

ri (x) =

{
1 x = si
0 x = sj , j 6= i

One function that works is

ri (x) =
m∏

k=1
k 6=i

(x`k − sk`k )

where `k is any coordinate in which si and sk differ. To construct r1(x) from this example:

k = 2: use x3 − 0

k = 3: use x1 − 0, x2 − 0, or x3 − 0.

Thus, we can use any of the following for r1(x):

r1(x) = x1x3, r1(x) = x2x3, or r1(x) = x2
3 = x3,

(Since we only care about functions, we may reduce x2
i = xi .)
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A familiar example k = 2

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

For each data point si , we’ll construct an r-polynomial that satisfies

ri (x) =

{
1 x = si
0 x = sj j 6= i

One function that works is

ri (x) =
m∏

k=1
k 6=i

(x`k − sk`k )

where `k is any coordinate in which si and sk differ. To construct r2(x) from this example,

k = 1: use x3 − 1

k = 3: use x1 − 0 or x2 − 0.

Thus, we can use any of the following for r2(x):

r2(x) = x1(x3 + 1), or r2(x) = x2(x3 + 1).
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A familiar example k = 3

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

For each data point si , we’ll construct an r-polynomial that satisfies

ri (x) =

{
1 x = si
0 x = sj , j 6= i

One function that works is

ri (x) =
m∏

k=1
k 6=i

(x`k − sk`k )

where `k is any coordinate in which si and sk differ. To construct r3(x) from this example,

k = 1: use x1 − 1, x2 − 1, or x3 − 0.

k = 2: use x1 − 1 or x2 − 1.

Thus, we can use any of the following for r3(x):

r3(x) = (x1 + 1), r3(x) = (x2 + 1), r3(x) = (x1 + 1)(x2 + 1),

r3(x) = (x1 + 1)x3 or r3(x) = (x2 + 1)x3.
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The vanishing ideal

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

One such choice for r1, r2, and r3 yields

f (x) = t1r1(x) + t2r2(x) + t3r3(x)

= 0 · x3 + 1 · x1(x3 + 1) + 0 · (x2 + 1)

= x1(x3 + 1).

We just found a single function that fits the data. Now, let’s find every such function.

Proposition

Let f (x) ∈ F[x1, . . . , xn]/〈x2
1 − x1, . . . , x2

n − xn〉 fit a set D =
{

(s1, t1), . . . , (sk , tk )
}

of data.

(i) If h(x) vanishes on all si , then f (x) + h(x) fits the data.

(ii) The polynomials that vanish on the data form an ideal I (D).

(iii) Every polynomial g(x) that fits the data can be written as g(x) = f (x) + h(x) for some
h(x) ∈ I (D).
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The structure of the model space

Theorem / Definition

Consider a set D =
{

(s1, t1), . . . , (sk , tk )
}

of data, where si ∈ Fn, ti ∈ F, and |F| = q.

The set of functions that fit the data is the model space

Mod(D) := f + I (D) =
{
f + h | h ∈ I (D)

}
,

where f is any function that fits the data, and I (D) is the vanishing ideal in

F[x1, . . . , xn]/〈xq1 − x1, . . . , x
q
n − xn〉,

Here are some other mathemtical problems whose solutions have a similar structure.

1. Parametrize a line in Rn.

2. Parametrize a plane in Rn.

3. Solve the underdetermined system Ax = b.

4. Solve the differential equation x ′′ + x = 2.
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Parametrize a line in Rn

Suppose we want to write the equation for a line that contains a vector v ∈ Rn:

x

y

z

v

t v
w

v+w

t v+w

This line, which contains the zero vector, is tv = {tv : t ∈ R}.

Now, what if we want to write the equation for a line parallel to v?

This line, which does not contain the zero vector, is

tv + w = {tv + w : t ∈ R} .

Note that ANY particular w on the line will work!!!
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Solve an underdetermined system Ax = b

Suppose we have a system of equations that has “too many variables,” so there are infinitely
many solutions.

For example:

2x + y + 3z = 4
3x − 5y − 2z = 6

“Ax = b form”:

[
2 1 3
3 −5 −2

]xy
z

 =

[
4
6

]
.

How to solve:

1. Solve the related homogeneous equation Ax = 0 (this is null space, NS(A));

2. Find any particular solution xp to Ax = b;

3. Add these together to get the general solution: x = NS(A) + xp .

This works because geometrically, the solution space is just a line, plane, etc.

Here are two possible ways to write the solution:

C

 1
1
−1

+

2
0
0

, C

 1
1
−1

+

10
8
−8

.
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Linear differential equations

Solve the differential equation x ′′ + x = 2.

How to solve:

1. Solve the related homogeneous equation x ′′ + x = 0. The solutions are
xh(t) = a cos t + b sin t.

2. Find any particular solution xp(t) to x ′′ + x = 2. By inspection, we see that xp(t) = 2
works.

3. Add these together to get the general solution:

x(t) = xh(t) + xp(t) = a cos t + b sin t + 2.

Note that while the general solution above is unique, its presentation need not be.

For example, we could write it this way:

x(t) = xh(t) + xp(t) = a(2 cos t − 3 sin t) + b sin t + (2− cos t + 8 sin t).

Here, the particular solution has (unnecessary) “extra terms” that vanish on the
homogeneous part, x ′′ + x = 0.
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The vanishing ideal and the model space

The function f (x) = x1(x3 + 1) fits the following data:

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

To find the model space Mod(D) = f + I (D), we need to find the vanishing ideal

I (D) ⊆ R/I := F[x1, . . . , xn]/〈x2
1 − 1, . . . , x2

n − n〉.

The polynomials that vanish on si = (si1, si2, si3) is the ideal

I (si ) =
{

(x1 − si1)g1(x) + (x2 − si2)g2(x) + (x3 − si3)g3(x) | gi (x) ∈ R/I
}

=
〈
x1 − si1, x2 − si2, x3 − si3

〉
.

The vanishing ideal is thus

I (D) = I (s1) ∩ I (s2) ∩ I (s3)

= 〈x1 − 1, x2 − 1, x3 − 1〉 ∩ 〈x1 − 1, x2 − 1, x3〉 ∩ 〈x1, x2, x3〉.

Note that this ideal has size |I (D)| = |Mod(D)| = 28−3 = 32. (Why?)
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The vanishing ideal and the model space

The function f (x) = x1(x3 + 1) fits the following data:

Input vectors: s1 s2 s3

x1x2x3 111 110 101 100 011 010 001 000
f (x) 0 1 ? ? ? ? ? 0

Output values t1 t2 t3

We can compute the vanishing ideal in Macaulay2:

Q = ZZ/2[x1,x2,x3] / ideal(x1^2-x1, x2^2-x2, x3^2-x3);

I1 = ideal(x1-1, x2-1, x3-1);

I2 = ideal(x1-1, x2-1, x3);

I3 = ideal(x1, x2, x3-1);

I_D = intersect{I1,I2,I3};

The output is:

ideal(x1-x2, x2x3-x2-x3+1)

Thus, the model space consists of the 32 functions

Mod(D) = f + I (D) =
{
x1(x3 + 1) + (x1 + x2)g1 + (x2x3 + x2 + x3 + 1)g2 | gi ∈ R/I

}
.
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Inferring Boolean models

We just saw how to find the model space of a Boolean function f : Fn
2 → Fn.

To find the model space of a Boolean model (f1, . . . , fn), we just do this for each coordinate.

Consider a set of data D =
{

(s1, t1), . . . , (sk , tk )
}

, with

Input vectors: s1, . . . , sm ∈ Fn

Output vectors: t1, . . . , tm ∈ Fn

That is, f (si ) = (f1(si ), f2(si ), . . . , fn(si )) = (ti1, ti2, . . . , tin) = ti .

We can encode this with n data sets of input vectors and output values:

Di =
{

(s1, t1i ), (s2, t2i ), . . . , (sk , t1k )
}
.

The model space of D is the direct product

Mod(D) =
{

(f1, . . . , fn) | fj (si ) = tij for all i and j
}

=
[
f1 + I (D)

]
× · · · ×

[
fn + I (D)

]
= Mod(D1)× · · · ×Mod(Dn).
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An example
Consider the following model of the lac operon, which
implicitly assumes that A degrades slower than M or B.


fM = xA
fB = xM
fA = L ∨ (B ∧ Lm) ∨ (A ∧ B).

If lactose levels are low, then L = Lm = 0, and this model reduces to the following:
f1 = x3

f2 = x1

f3 = (x2 + 1)x3. 001 101 111 110 010 000

100011

Let’s find the model space of just the data given by the red nodes and edges.

R = ZZ/2[x1,x2,x3] / ideal(x1^2-x1, x2^2-x2, x3^2-x3)

I1 = ideal(x1, x2, x3-1); I2 = ideal(x1-1, x2, x3-1);

I3 = ideal(x1-1, x2-1, x3-1); I4 = ideal(x1-1, x2-1, x3);

I5 = ideal(x1, x2-1, x3); I_D = intersect{I1,I2,I3,I4,I5};

The vanishing ideal consists of the 8 functions

I (D) = 〈x2x3 + x2 + x3 + 1, x1x2 + x1x3 + x1 + x2 + x3 + 1〉,

and so the full model space is

Mod(D) =
(
f1 + I (D), f2 + I (D), f3 + I (D)

)
=
(
x3 + I (D), x1 + I (D), (x2 + 1)x3 + I (D)

)
.
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An example (cont.)
Let’s now suppose that we didn’t a priori know a particular solution.

We’ll use interpolation to find f = (f1, f2, f3) that fits the data. For example:

f1(x) = t11r1(x) + t21r2(x) + t31r3(x) + t41r4(x) + t51r5(x)

= 1r1(x) + 1r2(x) + 1r3(x) + 0r4(x) + 0r5(x) = r1(x) + r2(x) + r3(x) ,

where

r1(x) =
5∏

k=1
k 6=1

(x`k − sk`k ) = (x`2
− s2`2

)(x`3
− s3`3

)(x`4
− s4`4

)(x`5
− s5`5

).

s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 =(0, 0, 0) = t5

Recall that `k is any coordinate in which s1 differs from sk .

skip k = 1

b12(x) = (x1 − s21) = x1 + 1

b13(x) = (x1 − s31) = x1 + 1

b14(x) = (x1 − s41) = x1 + 1

b15(x) = (x2 − s52) = x2 + 1

Let’s take r1(x) = (x1 + 1)3(x2 + 1) = (x1 + 1)(x2 + 1).
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An example (cont.)
Recall that bik (x) = x`k − sk`k , where `k is any coordinate that si differs from sk .

s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 = (0, 0, 0) = t5

b21(x) = (x1 − s11) = x1

skip k = 2

b23(x) = (x2 − s32) = x2 + 1

b24(x) = (x2 − s42) = x2 + 1

b25(x) = (x1 − s51) = x1

b31(x) = (x1 − s11) = x1

b32(x) = (x2 − s22) = x2

skip k = 3

b34(x) = (x3 − s43) = x3

b35(x) = (x1 − s51) = x1

b41(x) = (x1 − s11) = x1

b42(x) = (x2 − s22) = x2

b43(x) = (x3 − s33) = x3 + 1

skip k = 4

b45(x) = (x1 − s51) = x1

b51(x) = (x2 − s12) = x2

b52(x) = (x1 − s21) = x1 + 1

b53(x) = (x1 − s31) = x1 + 1

b54(x) = (x1 − s42) = x1 + 1

skip k = 5

Recall that xki = xi , and (xj + 1)k = xj + 1, so the “r -polynomials” are

r1(x) = (x1 + 1)(x2 + 1)

r2(x) = x1(x2 + 1)

r3(x) = x1x2x3

r4(x) = x1x2(x3 + 1)

r5(x) = (x1 + 1)x2
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An example (cont.)

We can now compute our particular solution (f1, f2, f3) that fits the data, using:

fj (x) = t1j r1(x) + t2j r2(x) + · · ·+ tmj rm(x) .
s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 = (0, 0, 0) = t5

f1(x) = t11r1(x) + t21r2(x) + t31r3(x) + t41r4(x) + t51r5(x)
= r1(x) + r2(x) + r3(x)
= 1 + x2 + x1x2x3

f2(x) = t12r1(x) + t22r2(x) + t32r3(x) + t42r4(x) + t52r5(x)
= r2(x) + r3(x) + r4(x)
= x1

f3(x) = t13r1(x) + t23r2(x) + t33r3(x) + t43r4(x) + t53r5(x)
= r1(x) + r2(x)
= 1 + x2.

Our original model was (f1, f2, f3) = (x3, x1, x3 + x2x3), but our algorithm yielded

(f1, f2, f3) = (1 + x2 + x1x2x3, x1, 1 + x2)

= (x3, x1, x3 + x2x3) + (1 + x2 + x3 + x1x2x3, 0, 1 + x2 + x3 + x2x3)

Remark

Each polynomial in the 2nd term above is in the vanishing ideal I . (Why?)
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An example (cont.)

Figure: The original phase space (left), and the reverse-engineered phase space (right).
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An example (cont.)

Now that we found a particular solution f = (f1, f2, f3) that fits the data, we need to
(re)compute the ideal I of polynomials that vanish on the data.

R=ZZ/2[x1,x2,x3] / ideal(x1^2-x1, x2^2-x2, x3^2-x3);

s1 = (0, 0, 1)= t0

s2 = (1, 0, 1) = t1

s3 = (1, 1, 1) = t2

s4 = (1, 1, 0) = t3

s5 = (0, 1, 0) = t4

s6 =(0, 0, 0) = t5

The ideal of polynomials that vanish on each sk is:

I1 = ideal(x1, x2, x3-1);

I2 = ideal(x1-1, x2, x3-1);

I3 = ideal(x1-1, x2-1, x3-1);

I4 = ideal(x1-1, x2-1, x3);

I5 = ideal(x1, x2-1, x3);

The ideal of polynomials that vanish on every sk is:

I = intersect{I1,I2,I3,I4,I5}

To compute a Gröbner basis:

G = gens gb I

The output is: | x2x3+x2+x3+1 x1x2+x1x3+x1+x2+x3+1 |
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An example (cont.)

In conclusion, the set of all Boolean models that fit the data D

001 101 111 110 010 000

i.e., the model space, is the set

F1 × F2 × F3, Fj = fj + I (D)

where I (D) is the vanishing ideal

I (D) = 〈g1, g2〉 =
〈
1 + x2 + x3 + x2x3, 1 + x1 + x2 + x3 + x1x2 + x1x3

〉
.

Our reverse-engineered BN is slighly different than the “true model”:

(f1, f2, f3) = (1 + x2 + x1x2x3, x1, 1 + x2)

= (x3 + x1g1 + g2, x1, (x2 + 1)x3 + g1)

Note that x1g1 + g2, 0, and g1 must be in the vanishing ideal I .
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An example (cont.)

Goal (“model selection”)

We would like to recover functions in Fj = fj + I that have no “extra terms” in I .

001 101 111 110 010 000

For example, the following particular solution has “extra terms”:

x ′′ + x = 2, x(t) = xh(t) + xp(t) = a cos t + b sin t + (2 + 5 cos t − 4 sin t︸ ︷︷ ︸
unnecessary; in xh(t)

).

One approach: the Gröbner normal form, which is the “remainder of fj modulo I .”

This does depends on the Gröbner basis, which depends on a choice of monomial ordering.

We can do this with Macaulay2, using the % symbol.

f1 = 1+x2+x1*x2*x3;

f2 = x1;

f3 = 1+x2;

f1%I; f2%I; f3%I;

(f1, f2, f3)

The output is: (x3, x1, x2+1). Almost the original Boolean model!
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Non-Boolean models

Just like the Boolean case, over a general finite field Fp , it suffices to construct

ri (x) =

{
1 x = si
0 x = sj , j 6= i

because then the following is a solution:

f (x) = t1r1(x) + t2r2(x) + t3r3(x).

Over F2, our construction guaranteed ri (si ) 6= 0, which is equivalent to ri (si ) = 1.

Over Fp , we have to be a little more careful. The following corrects for this:

ri (x) =
m∏

k=1
k 6=i

bik (x), bik (x) = (si`k − sk`k )p−2︸ ︷︷ ︸
ensures that ri (si ) = 1

(x` − sk`k )
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An example over F5
Consider the following time series in a 3-node algebraic model over F5:

s1 = (2, 0, 0)= t0

s2 = (4, 3, 1) = t1

s3 = (3, 1, 4) = t2

s4 =(0, 4, 3) = t3

ri (x) =
m∏

k=1
k 6=i

bik (x)

bik (x) = (si`k − sk`k )p−2(x` − sk`k )

Note that s1 differs from s2 and s3 in the `k = 1 coodinate, so this will work for each ri .

Particularly useful identities are: 0 = 5, −1 = 4, −2 = 3, −3 = 2, and −4 = 1.

Using our formulas for bij (x), we compute:

b12(x) = (s11 − s21)3(x1 − s21) = (2− 4)3(x1 − 4) = −8(x1 + 1) = 2x1 + 2

b13(x) = (s11 − s31)3(x1 − s31) = (2− 3)3(x1 − 3) = −x1 + 3 = 4x1 + 3 .

Therefore, the first r -polynomial is

r1(x) = b12(x)b13(x) = (2x1 + 2)(4x1 + 3) = 8x2
1 + 14x1 + 6 = 3x2

1 + 4x1 + 1 .
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An example over F5 (cont.)

Similarlly, we can compute the other r -polynomials, and they are

r1(x) = b12(x)b13(x) = (2x1 + 2)(4x1 + 3) = 8x2
1 + 14x1 + 6 = 3x2

1 + 4x1 + 1

r2(x) = b21(x)b23(x) = (3x1 + 4)(x1 + 2) = 3x2
1 + 10x1 + 8 = 3x2

1 + 3

r3(x) = b31(x)b32(x) = (x1 + 3)(4x1 + 4) = 4x2
1 + 16x1 + 12 = 4x2

1 + x1 + 2

Thus, the following functions fit the data:

f1(x) = t11r1(x) + t21r2(x) + t31r3(x)

= 4(3x2
1 + 4x1 + 1) + 3(3x2

1 + 3) + 0(4x2
1 + x1 + 2)

= x2
1 + x1 + 3

f2(x) = t12r1(x) + t22r2(x) + t32r3(x)

= 3(3x2
1 + 4x1 + 1) + 1(3x2

1 + 3) + 4(4x2
1 + x1 + 2)

= 3x2
1 + x1 + 4

f3(x) = t13r1(x) + t23r2(x) + t33r3(x)

= 1(3x2
1 + 4x1 + 1) + 4(3x2

1 + 3) + 3(4x2
1 + x1 + 2)

= 2x2
1 + 2x1 + 4

We have just found a single particular solution (f1, f2, f3) that fits the data.
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An example over F5 (cont.)

If I (si ) is the ideal that vanishes on si , then the vanishing ideal I (D) is

I (D) = I (s1) ∩ I (s2) ∩ I (s3) s1 = (2, 0, 0) , s2 = (4, 3, 1) , s3 = (3, 1, 4) .

These are precisely the sets

I (s1) = 〈x1 − 2, x2, x3〉 = {(x1 − 2)g1(x) + x2g2(x) + x3g3(x)}

I (s2) = 〈x1 − 4, x2 − 3, x3 − 1〉 = {(x1 − 4)g1(x) + (x2 − 3)g2(x) + (x3 − 1)g3(x)}

I (s3) = 〈x1 − 3, x2 − 1, x3 − 4〉 = {(x1 − 3)g1(x) + (x2 − 1)g2(x) + (x3 − 4)g3(x)}.

As before, we can compute this in Macaulay2:

R=ZZ/5[x1,x2,x3] / ideal(x1^5-x1, x2^5-x2, x3^5-x3);

I1 = ideal(x1-2, x2, x3);

I2 = ideal(x1-4, x2-3, x3-1);

I3 = ideal(x1-3, x2-1, x3-4);

I_D = intersect{I1,I2,I3};

gens gb I_D

A Gröbner basis for I (D) is thus

G = {x1 − 2x2 − x3 − 2, x2
3 + 2x2 − 2x3, x2x3 + 2x2 + x3, x2

2 + x3}.
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An example over F5 (cont.)

We constructed three functions that fit the following data D:

s1 = (2, 0, 0), s2 = (4, 3, 1) = t1, s3 = (3, 1, 4) = t2, t3 = (0, 4, 3).

Notice that the functions we found depend only on x1. (Why?)

f1=x1*x1+x1+3;

f2=3x1^2+x1+4;

f3=2x1^2+2x1+4;

We can compute the Gröbner normal form in Macaulay2:

p1 = f1 % I_D; p2 = f2 % I_D; p3 = f3 % I_D;

The output is

(p1, p2, p3) = (−x3 − 1, x2 − 2, −2x3 + 1) = (4x3 + 4, x2 + 3, 3x3 + 1).

The model space is thus

(4x3 + 4, x2 + 3, 3x3 + 1) + I (D)× I (D)× I (D),

where

I (D) =
{

(x1−2x2−x3−2)g1+(x2
3 +2x2−2x3)g2+(x2x3+2x2+x3)g3+(x2

2 +x3)g4 | gi ∈ R/I
}
.
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