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Inferring Boolean models from partial data

Suppose a Boolean model (fi, >, f3) has the following (partial) state space (s;, s;).

001 > 101 111 110 010 000 100 011
Main question
What are the possible Boolean models (fi, f2, f3), as polynomials? J

This is stronger than what we asked last time: which variables depend on which variables?

X 0 0 1 1 0 0 1 1
y 0 1 0 1 0 1 0 1
z 0 0 0 0 1 1 1 1
fi(x,y,z) ? 0 ? 0 1 ? 1 1
f(x,y,z) ? 0 ? 1 0 ? 1 1
fi(x,y,2) ? 0 ? 0 1 ? 1 0
As before, we can treat each function f1, f, f3 separately.
First question
What are the possible functions f: 5 — >, given partial information? J
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A familiar example

Recall the following unknown Boolean function:

x1xaxs | 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
fx) | 0 [ 1 ] 7 | 7 [ 7 [ 7] 7 o0

Of the 256 Boolean functions on 3 variables, 28—3 = 32 fit this data, and only 4 are unate:
X1 N\ X3, X2 N\ X3, x1 N\ x2 A\ X3, (X1VX2)A73.

The wiring diagrams of these functions are shown below, expressed several different ways.
X1 X2 x3 x1 X2 x3 X1 X2 X3 X1 X2 x3
(1,0, 1) (0,1,-1) (1,1,-1) (1,1,-1)

{x1,x3} {x2, X3} {x1, %, %3} {x1,%2,x3}

This time, we'll find the actual functions, in polynomial form.
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A familiar example

Input vectors: S1 s> S3
X1X0X3 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
f(x) 0 1 ? ? ? ? ? 0
Output values t1 ty t3

First step: interpolation

Find a single function f: ]Fg — [y that fits the data.

For each data point s;, we'll construct an r-polynomial that has the following property:

F(x) = 1 x=s;j#i
7o x=sj, jF£I

Once we have these, one such polynomial f(x) we seek will be

f(X) =tin (X) + t2l’2(x) + t3l’3(X).

Note why this works:
f(s1) = tini(s1) + tor(s1) + tsr3(s1) = t1 -1+ o
f(s2) = tir(s2) + tora(s2) + tars(s2) = t1 - 0+ 2
f(s3) = tiri(s3) + tara(s3) + t3r3(s3) = t1 -0+ t2
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0+4+t3:-0=1t1
14+t3-0=1t
04+t3-1=t3
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A familiar example: k=1

Input vectors: S1 s> s3
X1X2X3 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O
f(x) 0 1 ? ? ? ? ? 0
Output values t1 [ t3

For each data point s;, we'll construct an r-polynomial, satisfying

1 X =5j

ri(x) = {

One function that works is

0 X=Sj,_j7él'

m

ri(x) = [ [Cxe, — swe,)

k=1
k#i

where ¢ is any coordinate in which s; and sy differ. To construct ri(x) from this example:

m k=2 usexz3—0

m k=3 usex —0,x —0,orx3—0.

Thus, we can use any of the following for ri(x):

r(x) = xix3,

r(x) = x2x3, or n(x) =x3 = x,

2

(Since we only care about functions, we may reduce x? = x;.)
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A familiar example k = 2

Input vectors: S1 s> s3
X1X2X3 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O
f(x) 0 1 ? ? ? ? ? 0
Output values t1 tr t3

For each data point s;, we'll construct an r-polynomial that satisfies

ri(x) = {

1 X =5j
0 X=Sjj7él'

One function that works is
m

ri(x) = [ [ e, — swe,)
k=1
ki
where ¢ is any coordinate in which s; and s, differ. To construct r2(x) from this example,

m k=1 usex3—1

m k=3 use x; —0orx —0.
Thus, we can use any of the following for r>(x):

n(x) = xi(xs + 1), or r(x) = x(x3 +1).
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A familiar example kK =3

Input vectors: S1 s> s3
X1X2X3 111 | 110 | 101 100 | 011 | 010 | 001 | 0OO

f(x) 0 1 ? ? ? ? ? 0

Output values t1 tr t3

For each data point s;, we'll construct an r-polynomial that satisfies

1 =s;
r(x) = X =s;

One function that works is

0 x=sj,j#i

m

ri(x) = [ [ (e — skey)

k=1
ki

where ¢y is any coordinate in which s; and sy differ. To construct r3(x) from this example,

mk=1 usex3 —1 x—1,or x3 —0.

m k=2 usex; —1orx —1.

Thus, we can use any of the following for r3(x):

r3(x) = (xa +1),

r(x) =(x1 +1)x3

M. Macauley (Clemson)

r3(x) = (2 + 1),

or r3(x) = (x2 + 1)x3.

The model space

r3(x) = (1 +1)(>x2 + 1),
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The vanishing ideal

Input vectors: S1 s> s3
X1X2X3 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O

f(x) 0 1 ? ? ? ? ? 0

Output values t1 tr t3

One such choice for ri, ra, and r3 yields

f(X) =t r]_(X) + tgrz(x) + i3 r3(x)

=0-x3+1-x1(x3+1)+0-(x2+1)
=X1(X3+1).

We just found a single function that fits the data. Now, let's find every such function.

Proposition

Let f(x) € Flxi, ..., xn]/(x2 —xi,. ..,

(i) If h(x) vanishes on all s;, then f(x) + h(x) fits the data.
(if) The polynomials that vanish on the data form an ideal /(D).

x2 — xa) fit a set D = {(s1,t1),..., (sk, t) } of data.

(iii) Every polynomial g(x) that fits the data can be written as g(x) = f(x) + h(x) for some

h(x) € I(D).
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The structure of the model space

Theorem / Definition
Consider a set D = {(sl, t1), ..., (sk, tk)} of data, wheres; € F", t; € F, and |F| = q.
The set of functions that fit the data is the model space
Mod(D) :=f + I(D) = {f + h| h€ I(D)},
where f is any function that fits the data, and /(D) is the vanishing ideal in

Flxt, .., xal /(] — X1, X7 — Xn),

Here are some other mathemtical problems whose solutions have a similar structure.
1. Parametrize a line in R".
2. Parametrize a plane in R".
3. Solve the underdetermined system Ax = b.

4. Solve the differential equation x”/ + x = 2.
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Parametrize a line in R”

Suppose we want to write the equation for a line that contains a vector v € R":

This line, which contains the zero vector, is tv = {tv : t € R}.
Now, what if we want to write the equation for a line parallel to v?
This line, which does not contain the zero vector, is

tv+w={tv+w:teR}.

Note that ANY particular w on the line will work!!!
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Solve an underdetermined system Ax =b

Suppose we have a system of equations that has “too many variables,” so there are infinitely
many solutions.

For example:

2x+y+3z=4 wno ", 2 1 3
3x—5y—27=6 Ax = b form": |: ]

How to solve:

1. Solve the related homogeneous equation Ax = 0 (this is null space, NS(A));
2. Find any particular solution x, to Ax = b;
3. Add these together to get the general solution: x = NS(A) + x,.

This works because geometrically, the solution space is just a line, plane, etc.

Here are two possible ways to write the solution:

1 2 1 10
c| 1|+ |0f, Cl1/|+]|8
1 0 -1 -8
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Linear differential equations

Solve the differential equation x”/ + x = 2.

How to solve:

1. Solve the related homogeneous equation x” + x = 0. The solutions are
xp(t) = acost + bsint.

2. Find any particular solution x,(t) to x’’ 4+ x = 2. By inspection, we see that x,(t) = 2
works.

3. Add these together to get the general solution:
x(t) = xp(t) + xp(t) = acost + bsint + 2.
Note that while the general solution above is unique, its presentation need not be.
For example, we could write it this way:
x(t) = xp(t) + xp(t) = a(2cost — 3sint) + bsint + (2 — cos t + 8sin t).

Here, the particular solution has (unnecessary) “extra terms” that vanish on the
homogeneous part, x’/ + x = 0.
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The vanishing ideal and the model space

The function f(x) = x1(x3 + 1) fits the following data:

Input vectors: S1 s> s3
X1X2X3 111 | 110 | 101 | 100 | 011 | 010 | 001 | 00O

f(x) 0 1 ? ? ? ? ? 0

Output values t1 ty t3

To find the model space Mod(D) = f + I(D), we need to find the vanishing ideal
I(D) C R/1:=TF[x1,...,xn]/(x3 —1,...,x2 — n).

The polynomials that vanish on s; = (sj1, sj2, 5i3) is the ideal

1(si) = {(a = si)gr(x) + (2 — si)g2(x) + (x3 — siz)es(x) | gi(x) € R/1}

= <X1 — Si1, X2 — Sj2, X3 — 5i3>-
The vanishing ideal is thus

1(D)

I(Sl) N /(52) N I(S3)

(x1—1,xa—1,x3 —1) N {x1 — 1,x2 — 1, x3) N (x1, X2, X3).

Note that this ideal has size |[/(D)| = | Mod(D)| = 283 = 32. (Why?)
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The vanishing ideal and the model space

The function f(x) = x1(x3 + 1) fits the following data:

Input vectors: s1 s s3
X1X2X3 111 | 110 | 101 | 100 | 011 | 010 | 001 | 000
f(x) 0 1 ? ? ? ? ? 0
Output values ty t t3

We can compute the vanishing ideal in Macaulay2:

Q = 2Z/2[x1,x2,x3] / ideal(x1"2-x1, x2°2-x2, x3°2-x3);

I1 = ideal(x1-1, x2-1, x3-1);
I2 = ideal(x1-1, x2-1, x3);
I3 =

ideal(x1, x2, x3-1);

I_D = intersect{I1,I2,I3};

The output is:

ideal (x1-x2, x2x3-x2-x3+1)

Thus, the model space consists of the 32 functions

Mod(D) = f + (D) = {x1(x3 + 1) + (x1 + x2)g1 + (x2x3 + x2 + x3 + 1)g2 | gi € R/I}.
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Inferring Boolean models

We just saw how to find the model space of a Boolean function f: F — [F,.

To find the model space of a Boolean model (fi,.. ., f,), we just do this for each coordinate.
Consider a set of data D = {(sl,t;l)7 R (sk,tk)}, with

Input vectors: si,...,sm € F"

Output vectors: ti,...,tm € F”

That is, f(s;) = (fi(si), f2(si)s - - -, fa(si)) = (tins tia, - - - s tin) = ti.

We can encode this with n data sets of input vectors and output values:
Dj = {(s1, t17), (52, t2i), - - - (Sk> t1k) }-

The model space of D is the direct product

Mod(D) = {(ﬁ,...,fn) | fi(si) = t; for all i and j}
= [ +1(D)] x -+ x [fo+ I(D)]
= Mod(D1) x - - x Mod(Dy).
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An example

Consider the following model of the lac operon, which
implicitly assumes that A degrades slower than M or B.

fM:XA
fB = xm
fa=LV(BALm)V(AAB).

If lactose levels are low, then L = L, = 0, and this model reduces to the following:

fi = xs 011—> 100
h=x

fs = (%2 + 1)xs. 00l—>101—>111——>110——>010——> 000" D>

Let's find the model space of just the data given by the red nodes and edges.

R = 2Z/2[x1,x2,x3] / ideal(x1"2-x1, x2°2-x2, x372-x3)

I1 = ideal(x1l, x2, x3-1); I2 = ideal(x1-1, x2, x3-1);
I3 = ideal(x1-1, x2-1, x3-1); 1I4 = ideal(x1-1, x2-1, x3);
I5 = ideal(x1, x2-1, x3); I_D = intersect{I1,I2,13,I4,I5};

The vanishing ideal consists of the 8 functions
I(D) = (xox3 +x2 +x3 + 1, x1x2 + x1x3 + x1 + x2 + x3 + 1),
and so the full model space is

Mod(D) = (f + (D), K + (D), fs + I(D)) = (x3 + (D), x1 + (D), (x2 + L)x3 + I(D)).
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An example (cont.)

Let's now suppose that we didn't a priori know a particular solution.

We'll use interpolation to find f = (fi, f2, f3) that fits the data. For example:

fi(x) = tiri(x) + tarro(x) + t31r3(x) + tazra(x) + tsirs(x)
= 1n(x) + 1rn(x) + 1r3(x) 4+ 0ra(x) + 0r5(x) = ri(x) + r2(x) + r3(x),
where 5
n(x) = [, = ske,) = (xe, — 526,)(xe5 — 365)(xe, — Sa2,) (x5 — S505)-
P
s1 = (0,0,1)
s =(1,0,1) =t Recall that £ is any coordinate in which s; differs from sy.

-—

skip k =1
s=LLD)=t bio(x) = (x1 —s1) =x1 +1
bi3(x) = (x1 —s31) =x1 + 1
w=010=15 bia(x) = (x1 — s01) = x1 + 1
(X) = (X2 — 552) =x»+1

1%
&

|
—
o
(=)
=

Il

(s
£

Let's take ri(x) = (x1 +1)3(0 + 1) = (x1 + 1)(x2 + 1).

O — | = —
o
=
o

=
(=]
Il
o
&
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An example (cont.)
Recall that bj(x) = x,

s1 = (0,0,1)

|

s2=(1,0,1) =t1

l

ss=(L1L1)=t

l

se=(1,1,0) =t

l

ss = (0,1,0) = tq

l

(0,0,0) = t5

k _
Recall that x = x;, and (x;

M. Macauley (Clemson)

boi(x) = (x1 — s11) = x1
skip k =2

bo3(x) = (x2 —s32) =x2 + 1

bos(x) = (x0 —sa0) =x2+ 1

bos(x) = (x1 — s51) = x1

by1(x) = (xa —s11) = x1

bao(x) = (x2 — 52) = X2

bg3(x) = (x3 —s33) = x3+ 1
skip k =4

bss(x) = (x1 — s51) = x1

rn(x) = (xa +1)(x +1)

r(x) = xi(x2 + 1)
r3(x) = xix2x3

ra(x) = x1x2(x3 + 1)
rs(x) = (x1 + 1)x2

The model space

bs1(x) =
b3 (x) =

b34 (X) =
bss(x) =

bs1 (x

(x) =
bsa(x) =
bs3(x) =
bsa(x) =

— Ske,» where £ is any coordinate that s; differs from sy.

(x1 —s11) = x1
(x2 —s22) =x2
skip k =3

(x3 —s13) =x3
(x1—s51) =x1

(x2 — s12) =
(x1—s1)=x1 + 1
(x1t—s31)=x1+1
(x1t—sp2)=x1+1
skip k =5

+ 1)k = xj 4+ 1, so the “r-polynomials” are
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An example (cont.)

We can now compute our particular solution (f1, f, f3) that fits the data, using:

|£(x) = tri(x) + tjr2(x) + - + tmjrm(x) |

S1 = (07 07 1)

¢ fl(X) = t11r1(x) + t21r2(X) + I’31I’3(X) + t41r4(><) + t51r5(><)
s2=(1,0,1) =1t = rn(x) + n(x) + r3(x)

} =1+ x + x1x2x3

s=0Ll)=t f(x) = tiar(x) + toar(x) + t32r3(x) + tazra(x) + tsors(x)

! = n(x) + () + ra(x)
S4:(1.1.0):t3 =x1
5= (0 ﬁ 0) =t f(x) = tizri(x) + tozra(x) + t33r3(x) + tazra(x) + t5375(x)
5 1, 4 = n(x) + r(x)
¢ =14 x.
(0.0,0) =ts

Our original model was (fi, f, f3) = (x3, x1, X3 + x2x3), but our algorithm yielded

(A, H,B) = (14 x + x1x2x3, x1, 1+ x2)
= (x3, x1, X3 + x2x3) + (1 + x2 + x3 + x1x2x3, 0, 1 + x2 + x3 + x2x3)

Remark
Each polynomial in the 2nd term above is in the vanishing ideal I. (Why?) J
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An example (cont.)

Coet a»

aD Go Coon)
G G Gond Ciod
Good (o <D

Coro <D

GooD <

Figure: The original phase space (left), and the reverse-engineered phase space (right).
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An example (cont.)

Now that we found a particular solution f = (fi, 2, f3) that fits the data, we need to
(re)compute the ideal | of polynomials that vanish on the data.

R=ZZ/2[x1,x2,x3] / ideal(x1°2-x1, x2°2-x2, x372-x3);

s1 = (0,0,1) The ideal of polynomials that vanish on each sy is:

l I1 = ideal(xl, x2, x3-1);
I2 = ideal(x1-1, x2, x3-1);
I3 = ideal(x1-1, x2-1, x3-1);

l I4 = ideal(x1-1, x2-1, x3);
ss=(1,1,1) =t I5 = ideal(x1l, x2-1, x3);

i The ideal of polynomials that vanish on every sy is:
ss=(1,1,0) =13 I = intersect{I1,I2,I3,I4,I5}

To compute a Grobner basis:
G =gens gb I

The output is: | x2x3+x2+x3+1 x1x2+x1x3+x1+x2+x3+1 |
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An example (cont.)

In conclusion, the set of all Boolean models that fit the data D

001—>101——>111——>110——>010——> 000

i.e., the model space, is the set
Fi1 x F> X F3, Fi =f+ (D)
where /(D) is the vanishing ideal
I(D) = (g1, &) = (1 +x2 + x3 + x2x3, L+ x1 4 x2 + X3 + X12 + x1x3).
Our reverse-engineered BN is slighly different than the “true model”:

(f, R, B) = (14 x2 + x1x2x3, x1, 1+ x2)
= (s +xg +&, x1, (x2x+1)x3+g1)

Note that x181 + g2, 0, and g1 must be in the vanishing ideal /.

M. Macauley (Clemson) The model space Algebraic Biology 22/28


mailto:macaule@clemson.edu

An example (cont.)

We would like to recover functions in Fj = fj + I that have no “extra terms” in /.

Goal (“model selection”) J

001—>101—>111——>110——>010——> 000
For example, the following particular solution has “extra terms”:
X" +x=2, x(t) = xp(t) + xp(t) = acost + bsint + (24 5cost —4sint).
unnecessary; in xp(t)
One approach: the Grobner normal form, which is the “remainder of f; modulo /.”

This does depends on the Grébner basis, which depends on a choice of monomial ordering.

We can do this with Macaulay2, using the % symbol.

f1 = 1+x2+x1*x2%x3;
£f2 = x1;

£3 = 1+x2;

£1%1; £2%I; £3%I;
(f1, f2, £3)

The output is: (x3, x1, x2+1). Almost the original Boolean model!
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Non-Boolean models

Just like the Boolean case, over a general finite field Fp, it suffices to construct

ri(x) = {1 X =s;

0 x=s;, jAI
because then the following is a solution:
f(x) = tirn(x) + tara(x) + tars(x).
Over Fy, our construction guaranteed r;(s;) # 0, which is equivalent to ri(s;) = 1.

Over Fp, we have to be a little more careful. The following corrects for this:

m

ri(x) = [ [ bie(x), bi(x) = (sie, — ske, )P~ 2 (xe — Skey)
kel S —
ki ensures that ri(s;) = 1
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An example over Fs
Consider the following time series in a 3-node algebraic model over Fs:

s1=(2,0,0)

l r(x) = I bwx)
k=1

S = (4’ 3, 1) =t k;i

l

s5=(3,1,4) =t bix(x) = (sie, — Ske, )P~ 2(xe — Ske,)

l

(0,4,3) =t3
Note that s; differs from sy and s3 in the £, = 1 coodinate, so this will work for each r;.
Particularly useful identities are: 0 =5, -1 =4, —2=3, —3 =2, and —4=1.

Using our formulas for bjj(x), we compute:

bia(x) = (s11 — 21)3(x1 —s21) = (2—4)3(x1 —4) = —8(x1 + 1) = 2x1 + 2
bi3(x) = (s11 — 531)%(x1 — s31) = (2 = 3)3 (1 — 3) = —x1 +3 = 4x1 + 3.

Therefore, the first r-polynomial is

r(x) = bra(x)b13(x) = (2x1 +2)(4x1 +3) = 8x% 4+ 14x; + 6 = 3xZ + 4x; + 1.
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An example over F5 (cont.)

Similarlly, we can compute the other r-polynomials, and they are

r(x) = b1a(x)b13(x) = (2x1 +2)(4x1 +3) = 8x% + 1dxy +6 = 3x2 + 4x + 1
ra(x) = ba1(x)bas(x) = (3x1 + 4)(x1 +2) = 3xZ + 10x; + 8 =3x% + 3
r3(x) = ba1(x)bs2(x) = (x1 4 3)(4x1 + 4) = 4xZ + 16x1 + 12 = 4x? + x1 + 2

Thus, the following functions fit the data:

fl(X) = fll"l(X) + t21r2(x) + t31r3(x)
= 4(3x2 4+ 4x; + 1) + 3(3x% + 3) + 0(4x2 + x1 +2)
=xZ+x+3

f(x) = tian(x) + tara(x) + ta2r3(x)
= 3(3x2 + 4xy + 1) + 1(3x% + 3) + 4(4x + x1 +2)
=32 +x+4

f3(X) ti3n (X) + t23r2(x) —+ t33r3(x)
1(3x¢ +4x1 + 1) +4(3x¢ +3) + 3(4x% + 1 +2)

:2x12+2xl+4

We have just found a single particular solution (f1, 2, f3) that fits the data.
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An example over F5 (cont.)

If I(s;) is the ideal that vanishes on s;, then the vanishing ideal /(D) is

I(D)ZI(Sl)ﬂ/(Sz)ﬁI(S3) S1 =(2,0,0), ) =(4,3,1), S3=(3,1,4).

These are precisely the sets

I(s1) = (x1 — 2, %2, x3) = {(x1 — 2)g1(x) + x282(x) + x3g3(x)}

I(s2) = (x1 — 4,2 — 3,x3 — 1) = {(>1 — 4)g1(x) + (x2 — 3)g2(x) + (x3 — 1)gs(x)}

I(s3) = (x1 = 3,%2 — 1, x3 — 4) = {(>1 — 3)g1(x) + (x2 — L)g2(x) + (x3 — 4)gs(x)}.
As before, we can compute this in Macaulay?2:

R=ZZ/5[x1,x2,x3] / ideal(x1°5-x1, x2°5-x2, x3°5-x3);

I1 = ideal(x1-2, x2, x3);

I2 ideal(x1-4, x2-3, x3-1);

I3 ideal(x1-3, x2-1, x3-4);

I_D = intersect{I1,I2,I3};
gens gb I_D

A Grdbner basis for /(D) is thus

G={x1—2x —x3—2, x§ +2x2 — 2x3, X2x3 + 2x2 + X3, X3 + X3}.
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An example over Fs5 (cont.)
We constructed three functions that fit the following data D:
s1 = (2,0,0), so =(4,3,1) =1y, s3=(3,1,4) = ta, t3 = (0,4, 3).

Notice that the functions we found depend only on x;. (Why?)

fl=x1*x1+x1+3;

£2=3x1"2+x1+4;

£3=2x1"2+2x1+4;
We can compute the Grébner normal form in Macaulay2:

pl = f1 %, I_D; p2 =1£2 9% I_D; p3 =£3 7% I_D;
The output is

(p1,p2,p3) =(—x3— 1, x0 —2, —2x3+ 1) = (4x3 + 4, x2 + 3, 3x3 + 1).
The model space is thus
(4x3 + 4, x2+ 3, 3x3+ 1) + /(D) x (D) x (D),

where

(D) = {(x1—2x2—x3—2)g1+ (3 +2x0—2x3) g2+ (x2x3+2x0+x3)g3+ (35 +x3)84 | & € R/I}.
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