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What is a group? (“wrong” answers only)

Definition
A group is a set G satisfying the following properties:
1. There is an associative binary operation % on G.
2. There is an identity element e € G. Thatis, exg=g=g=+*eforall g€ G.

3. Every element g € G has an inverse, g~1, satisfying gx gl =e=g 1 *g.

Every group has a presentation of generators and relations. For example:
m The quaternion group:
Qs={ijk|P=2=k>=-1)={£1,£i, £/, Kk}

m The dihedral group:
Dp={r.f|r"=f=rfr="r).
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Groups you didn't know existed. . .

(and other you couldn’t possibly live without!)

Some groups of order 16
m The abelian group:
Cg x Co={(rs| P =s2=1, rs = sr).

m The dihedral group:

Dg = <r,s | P =s2=1, sr:r*15>.

m The dicyclic group:
Dicg = <r,s | B=st=1 r*= 52>.

m The semidihedral group:

SDg = <r,s | P =s2=1, srs= r3>.
m The semiabelian group:

SAg = (r,s|r*=s%>=1, srs=r°).

m The Pauli group

Pauliy = <a, b, c | at=c2= 1, a2 = b2, ac = ca, a’b = cbc).
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A Cayley diagram is a way to visualize a presentation

Here is a Cayley diagram for the dihedral group

2£ — f2
Ds=(rf|rP=Ff=1,f=f). cr= =T

We'll always multiply left-to-right! ﬂ
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A group of size 8
Call the following rectangle configuration our home state: 1

Suppose we are allowed the following operations, or “actions’™
m s: swap the two squares

m t: toggle the color of the first square.

s t

1 3 2| i 2]

Here is a Cayley diagram:

N il =
/ETTEN
[
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Frieze groups L R A N

N

Definition

Let v be the unique vertical reflection. Other symmetries come in infinite families. Define
m t: minimal translation to the right m hj: horizontal reflection across ¥;
m g=tv=yvt: min'l glide-reflection right m r;i: 180° rotation around p;

The symmetry group of the frieze above consists of the following symmetries:
G={vtu{hliezyu{nliezyu{t |iezyu{d |iez}
Letting h := hg and r := ry, this frieze group is generated by

Gy :

(t.hovy={(t,hry={(t,v,ry={g hv)y="--
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Frieze groups

Let’s look at how the various reflections and rotations are related:

to b R TN to ta %
A ;

9. 0 o . 9.6.9 . ¢ -1910

| N N N N | N N
W
Similarly, it follows that h;jt = h;41 and rit = rj;; for any i € Z.
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A “smaller” frieze group

Let's eliminate the vertical symmetry from the previous frieze group.

tg Ly Ly t & 2 2
: ! : : :

1

1

00 4
u—,’m%pl’pl%ps’us

We lose half of the horizontal reflections and rotations in the process. The frieze group is
Gri= {9 |1 € ZYU Y |/ € ZyU{r?*** |k € Z} = (g, h) = (ve. ) = (9.1) = (vt, D).

To find a presentation, we just have to see how g and h are related:
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Other friezes generated by two symmetries
Frieze 3: eliminate the vertical flip and all rotations

XX O )

Gs={t'|ieZ}u{W|Z}=(t.h|h =1, tht=r)

Frieze 4: eliminate the vertical flip and all horizontal flips

G={t'|iez}u{/|Z} =(t.r|rP=1, trt=r)

Frieze 5: eliminate all horizontal flips and rotations

JJ)))))

Gs={t'|iezZ}u{d|Z}=(t,v|vi=1, tv=vt)

A visual tour of the beauty of group theory

tht = h
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A Cayley diagram of our first frieze group

by L3 Lo L4 {4 £ 2 43 n
: : : : ! : : : :

NERENININY

A presentation for this frieze group is

G ={t,hv|h =v>=1, hv = vh, tv=t, tht = h).

We can make a Cayley diagram by piecing together the “tiles” on the previous slide:

N
N
N
o
A

O—

O——
O—

O——
O—
O—

O——0
O—

]
!
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The quaternion group
Recall that the quaternion group is
Qe={ijk|i?P=2=kK =ik=-1)={(ij|i*=j*=1, iji=J),

Here is a Cayley diagram and Cayley table:

“Collapsing” the group in this manner is a quotient ¢: Qg — V4.

Key idea J
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If it looks like a group and quacks like a group. ..

It isn't necessarily a group. (Do you see why?)

Remark J

This is why we need the formal definition of a group.
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Representing groups with matrices

Finite cyclic groups can be represented by complex rotation matrices:

Cn 2 (Rn) = <[e2:/n e,zom/nD - <{% ZO} > '

We get a dihedral group by throwing in a reflection matrix

D"g<[<o” ZOJ’[(lJ é]>’£<r,f|r”:1, =1, rfr=f).

The quaternion group can be represented as follows:
o - 1 0 i 0 0 -1 0 —i
e 8 O O T o )
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Making new groups from old
What if we replaced ! 0l _ Ca 9 with Cn P in the quaternion group Qg?
p o —i|=lo & o c, q group Qg

If nis even, then we get the dicyclic group:

Dic,,%<{%” ZOJE Bl}>:<r,s|r”:1, sh=1, r"? =32, rsr = s).

Compare to the dihedral group:

Dngq%" EOJ’[(l) é]>§<r,f|r":l, =1, rfr=1).
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Another way to think of the dicyclic groups
We can construct Dicg = (r, s) = ({6, ) as follows:
m start with the quaternion group Qg = (i, j) = ((a.J)

m replace i = €?™/* = (4 with the 6' root of unity (s = €™/6 = 1 + 3

m multiplication rules jj = k and ji = —k remain unchanged.

M. Macauley (Clemson)
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The dicyclic groups

Here's another layout of the Cayley diagram of Dic, = (r, s) = ((», ), for n = 4,6, 8.

This empathizes different structural features.

When n = 2™, Dic, is also called the generalized quaternion group, Qam.
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Generalizing the dihedral groups

Let’'s consider another way to generalize D,,.

Equivalently, what can we replace the relation srs = r"~! with? That is,

G={(rs|r"=1,s=1,77).
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Semidihedral groups

If nis a power of 2, we can replace srs = r"™1 with srs = r"/2-1,

Definition

For each power of two, the semidihedral group of order 2" is defined by

SDyn1 =(r,s | P2 =s2=1, 55 = r2n*2_1>.
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Semiabelian groups

Still assuming n is a power of 2, let’s replace srs = r"/2=1 with srs = r/2+1,

Definition

For each power of two, the semiabelian group of order 2" is defined by

SAs-1 = (r,s | P2 =s2=1, 55 = r2n*2+1>.
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One more re-wiring

Of course, there's one more way that we can re-wire Dj. ..

When this group has order 27, its presentation is
Con_1 X Gy ={(r,s | P22 =1 srs = r).
Remarkably, this and the other three we've seen are the only possibilities:

srs = r~1 (dihedral), srs = r2" =1 (semidihedral), srs = r2"°*1 (semiabelian).
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Dihedral vs. semidiheral vs. semiabelian groups

In other words, there are exactly 4 groups of order 2" with both:
m an element r of order 271

m an element s & (r) of order 2.

Let's compare the cycle diagrams of the three non-abelian groups from this list:

Remark J

The semiabelian group SA, and the abelian group C, x C, have the same orbit structure!
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Groups you didn't know existed. . .

(and other you couldn’t possibly live without!)

Theorem

There are exactly four nonabelian groups of order 2" that have an element r of order 2"—1:
1. The dihedral group Dy,-1 = <r, s | P2 =2 = 1, srs = r*1>.
2

n—1 n—2
I =g =1, 2 ,rsr:s).

2"*271>_

. The dicyclic group Dicyn-1 = <r, s|r =5

2
3. The semidihedral group SDyn-1 = <r, s | 27— 82 = 1, srs=r
4

n—1 n—2
2 =s2=1, srs=r2" 1),

. The semiabelian group SAy-1 = (r,s | r

Compare our canonical representations of the dihedral and dicyclic groups:
~ /¢ O] [0 1 oL/ o 0 1
D":qo G0y Pe=(lo &) -1 o)/
If n=2™, we also get a semidihedral and semiabelian group:
~ /[¢n 0 0 1 ~ /[¢n 0 0 1
SDn = <[0 —Co) " (1 o]/ M=o —¢ 1 o)

Question: What would happen if we took Qg, and added in the reflection matrix?

M. Macauley (Clemson) A visual tour of the beauty of group theory TMWYF, October 2021 22 /73


mailto:macaule@clemson.edu

One more way to generalize quaternions: the Pauli group
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Generalizing the Pauli group

Let's replace i = (4 = e2™/* with ¢, = e2™/7,

(Cord. Cad, f>g<[40n CQJ [g —01] [@% —OCn:|’ [(1) é}>gDic8N9C2-
———— —— — —— ~——(—

R=Rn s T=Thn F
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The automorphism group of C,
Each automorphism is defined by where it sends a generator: r — rk.

"each red arrow gets multiplied by k"
The group Aut(Cy,) is isomorphic to the group with operation multiplication modulo n:
Up={k >0]gcd(n, k) =1}.
Example:
Aut(Gr) 2 U; = {1,2,3,4,5,6} = (3) =2 G
=1, 2t=2 22=4, 25=1
30=1, 31=3 32=2

3¥=6 3*=4 3P=5

Since U7 = (3), the re-wirings of C; are generated by the “tripling map” r 2 3

OF 3

1 (r1)3=r3 T (r3)3:r2 r2 (r2)3_r6 10— r6)3_r4 4o (I’4)3—I’5
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The smallest nonabelian group of odd order

Here's how to constrct the semidirect product, G; xg Cs.

@ AUt(C7) @
©—@

G -2 Aut(Cr)
sk —s 2k

F—@—@
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An example: the 15¢ semidirect product of Cs and C4
Let's construct a semidirect product Cs xg, Cy4:

° @ “labeling map"
Ca

Cy i) Aut( C5)

bk'—>¢pk

AUt(C5) 91(C4)

" rewirings” “balloons” “labels"
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An example: the 2" semidirect product of Cs and C4

Let's now construct a different semidirect product, Cs Xg, C4:

“labeling map"

Aut(GCs)

" rewirings”

Ca

o-
Cy i) Aut( C5)
“balloons’

bk — (p2k

6>: Cp —> Aut(Cs) T

bk —s 2k
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Embeddings vs. quotients: A preview

The difference between embeddings and quotient maps can be seen in the subgroup lattice:

AGL}(:B) Dicio

Cio

Gs
Cs CANONG G CA\/Q//Q/QC‘*
G G

In one of these groups, Ds is subgroup. In the other, it arises as a quotient.

This, and much more, will be consequences of the celebrated isomorphism theorems.
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The subgroup lattice of Dy

N T
B ,)’
2 1 A
fa ‘ \f’3f rf,
2f 2 . r N , 2
r 2]\ r 2 > 2[\ r
£ a )
1 7 N
fu ‘ N rf,
1 > N 7’
Y d
1 . 7’
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Cosets

Consider the subgroup H = (f) of Ds.

m The left coset rH in Ds: first go to r, then traverse all “H-paths".

m The right coset Hr in Dy: first traverse all H-paths, then traverse the r path.

N :

@@ ~ © @@ nr
@

®

®

rH=r{1,f}={r rf}=rf{f, 1} =rfH Hr = {1, f}r = {r,r3f} = {f, 1}r3f = Hr3f
Key point
Left and right cosets are generally different. J
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The normalizer is the union of left cosets that are right cosets

© ©
@ @
CRONN & NGRONING eH (O @@ rv OO

@
®

H

@

®

®

@ @ (\@
OO 00 OO0

. Ve

®

®

I

® O

©) &
®)

H rPH rH r3H H  Hr?
f|r2f| rf | r3 f|r2f| 3 r Hr3
1| r2| r [r3f 1| 2| r fr Hr
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The normalizer is the union of “blue cosets”

H |92H

g3H

Partition of G by the

gnH H [Hg2

Hgn

Hgs

left cosets of H

Partition of G by the

right cosets of H

If we “collapse” G by the left cosets, then Ng(H) consists of the cosets that are reachable

from H by a unique path.

M. Macauley (Clemson)
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Three subgroups of A4

The normalizer of each subgroup consists of the elements in the blue left cosets.

Here, take a = (123), x = (12)(34), z = (13)(24), and b = (234).

(14)(23) (142)  (143)
(124)  (234) (143) (132) (13)(24) (243)  (124) (124)  (234) | (143) (132)
(123)  (243) (142)  (134) (12)(34) (134)  (234) (123)  (243) | (142) (134)
e (12)(34) (13)(24) (14)(23) e (123)  (132) e (12)(34) | (13)(24) (14)(23)

[A4 : NA4(N)] =1
“normal”

M. Macauley (Clemson)
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The degree of normality

Let H < G have index [G : H] = n < co. Let’s define a term that describes:

“the proportion of cosets that are blue’

Definition
Let H < G with [G : H] = n < co. The degree of normality of H is
[NG(H)I 1
Deg3(H) := = .
N TN A )

m If Degg(H) = 1, then H is normal.
mIf Degé‘(H) = % we'll say H is fully unnormal.

m If % < Deg@(H) < 1, we'll say H is moderately unnormal.

Big idea

The degree of normality measures how close to being normal a subgroup is.

M. Macauley (Clemson) A visual tour of the beauty of group theory TMWYF, October 2021 35/ 73


mailto:macaule@clemson.edu

Revisiting Az

Observations
m A subgroup is normal if its conjugacy class has size 1.
m The size of a conjugacy class tells us how close to being normal a subgroup is.

m For our “three favorite subgroups of As™:

1 1 1
Ap(N) =1= ——=—, Jcla(H)|=4= ca(K)|=3= ———.
|eladM)] Degj; (N) [elaiH)| Degjy (H) [elai(K)] Degj,(K)
v
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The number of conjugate subgroups
Though we do not yet have the tools to prove such a result, we will state it here.
Theorem
Let H < G with [G : H] = n < co. Then

1

|clg(H)| = Deg2(H)

=[G : Ng(H).

That is, H has exactly [G : Ng(H)] conjugate subgroups.

G = Ng(N) G
m
n Ng(K)
’: N \/‘ . \) ! K X2 sz xme
normal fully unnormal moderately unnormal
|clg(N)] =1 | clg(H)| =[G : H]; as large as possible 1< |de(K)| <[G:K]
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A mystery group of order 16

A subgroup is a unicorn if it's fixed by every lattice automorphism.

. SN

<r2, s) (rs) (r) x(r Cs)x L x(rs)xT1 x(r)x~

N

(rtys)  (r?s)  (r?) (r s>x x(rPs)x 1 x{r2)x !
SN SN
(s) (r*s)y  (r") x(shx=L x(rés)x=1 x(riyx—1
N
(1) x(1yx-1

We can deduce that every subgroup is normal, except possibly (s) and (r*s).
There are two cases:

m (s) and (r*s) are normal = s € Z(G) = G is abelian.

m (s) and (r*s) are not normal = clg((s)) = {(s), (r*s)} = G is nonabelian.

This doesn’t necessarily mean that both of these are actually possible. . .
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A mystery group of order 16

It's straightforward to check that this is the subgroup lattice of
CGxC={rs|rf=s=1ss=r).

Let r =(a,1) and s = (1, b), and so Gg x C» = (r,s) = {(a, 1), (1, b)).

((a.1), (1, b))

N

(a, b)) {(a, 1))

AN

((1.b),(a% 1)) (@, b)) {(2°.1))

SN

((Lb)  ((a* b)) ((a*1))

N

(1,1)
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A mystery group of order 16

However, the nonabelian case is possible as well! The following also works:

SAg = (r,s|r*=5s>=1,srs=r%).
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Conjugation preserves structure

Let h = hg denote the reflection across the central axis, £.

Suppose we want to reflect across a different axis, say £_».

N ! eo

S AL AL A ]

h_o = thet™!

g L3 Lo Lg fy 4 b 3 4 14 13 12 zl £
B . I . I N . A . ]

0.6 .4.0.0 . 6.0.6.0.9

FTEe T & TG o e e
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Conjugation preserves structure in the symmetric group
The symmetric group G = S is generated by any transposistion and any n-cycle.

Consider the permutations of seating assignments around a circular table achievable by
m (23): “people in chairs 2 and 3 may swap seats”

m (123456): “people may cyclically rotate seats counterclockwise’

Here's how to get people in chairs 1 and 2 to swap seats:

positions 1 and 2 2 and 3

3 2
r = (123456)
4 1
s 6 5 6
| "
want to swap (12) : (12) _ r(23)r_1 (23) swap positions
v

2
@. _. r = (123456)
4 --(d) -1
@
6
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An example: conjugacy classes and centralizers in Dicg

DiC6

/ :

<r> rs r

s r°s

(s) (rs) (sr) S res r

(r2) /// s 2 4
\r3> 1 r 7

(1) conjugacy classes
rs r’s  r°s
r? 7 r’s r’s s r’s r%s 7 r’s 7 ros
r # s ris r 7 ro r s 7 r*s
1 = s rs 1 r? rt 1 s s
[G:Cs(r¥)] =1 [G:Cs(r?)] =2 [G: Cs(s)]=3
“central” “moderately uncentral” “fully unncentral”
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The size of a conjugacy class

The following result is analogous to an earlier one on the degree of normality and | clg(H)|.

Theorem
Let x € G with [G : (x)] = n < co. Then
1

|cle(x)] = ENam)

—[6: Cs(1)]

That is, there are exactly [G : Cg(x)] elements conjugate to x.

Both of these are special cases of the orbit-stabilizer theorem, about group actions.

G=Co(x) G G
m
n
n Ce(x)

n/m

Ix0(%) Co(x)=(x) (X  gaxgy* gnxgy" ) (x) {x g2xgy '+ gmxgpt)
central fully uncentral moderately uncentral

|clo(x)] =1 | clg(x)] =[G : (x)]; as large as possible 1< |de(x)] <[G:(x)]
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Quotient groups
Big idea
The quotient group G/N exists iff N < G. J

collapse
bH —>
v cosets
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The 1st isomorphism theorem: “all homomorphic images are quotients’

& O =
p=trog
\ L ‘“relabeling map"
“quotient map” q
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The 1st isomorphism theorem: “all homomorphic images are quotients’
The 1st isomorphism theorem, G/ Ker(¢) =2 Im(¢), says that
¢: Qg — Vi, d(i)=v, () =nh
decomposes as the composition of:
® a quotient by N = Ker(¢) = (—1) = {£1},

m a relabeling map t: Qg/N — V.

-
+k h r
+j r
i} L h
+-i e v
+1 v e
Next natural question
What do we know about quotients? J
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The 4th 2nd isomorphism theorem: “subgroups of quotients

Subgroups of G/N are simply quotients of subgroups of G by N.

(<G
shoeboxes w/ lids off

items out of the box

A visual tour of the beauty of group theory

M. Macauley (Clemson)

2 |2 rSs 2 B2 s 2N r2sN
r [ s ris r i rs rs rN rsN
1 8 s s 1 2| s s N sN
(/N < G/N (rN) < G/N
shoeboxes w/ lids on

TMWYF, October 2021
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The 4th 2nd isomorphism theorem: “subgroups of quotients

(rr®)

(rN, sN)

(r,s) /5>/(r3>
(rN)

(r)
(s)  (rs) (rs) G (3 (P (sN)  (rsN) (r2sN)
(r®) 3
Moreover, H/N I G/N iff H< G.
25 2s s 25| 2s rs r2N r2sN
r 4 rs s r rt rs r*s rN rsN
1 B s s 1 B s s N sN
(s)<G (s)/N < G/N (sN) < G/N
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The 3rd isomorphism theorem: “quotients of quotients’

If H/N <1 G/N, then (G/N)/(H/N) = G/H.

AN

(r?,s) (rs)
SIS

(n

G/N

SN

(r?2.s)/N (rs)/N (r)/N

N |

"So easy, even a freshman can do it!"

™\

(r2s)  (rs) (r)

(r*.s) (r?s)  ()=H (/N (r?)
(=N
. 4 A ( )
(7 N\ ( )
50 52 51 53 20eN| 1N 20 H
+ +
20 22 21 23
(. / | /
(7 \) ( )
40 42 41 43 o] (12N 10H
+ +
10 12 11 13
(. / | /
(7 ) ( )
31 33 01N H
+
01 03
- J . J
(. J |\ J (. J
N<H<G

M. Macauley (Clemson)

G/N consists of 6 cosets

G/H consists of 3 cosets

H/N = {N, 01+N} (G/N)/(H/N) = G/H

A visual tour of the beauty of group theory
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The 2nd 4th isomorphism theorem: “quotients of products by factors'

If A normalizes B, then AB/B = A/(AN B).  (Your freshman will get this one wrong.)

Zg X Ze
T (1.2)) (L D) (0, 1))
A‘B \ ‘
\ ((1,0), (0,3))
A B
(0.2)
ANB

((1,0)) _((1.3)) (03)>

((0 0))

The fact that the subgroup lattice of V4 is diamond shaped is coincidental.
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The 5th isomorphism theorem: “subgroups and quotients commute’

Key idea
The quotient of a subgroup is just the subgroup of the quotient. J

Example: Consider the group G = SL»(Z3).

G = (a,b)
/ subgroup H = Qg H/N 2V,
(a?b, ab?) (a?b, ab?) (a2b, ab?)/N
/ \ (@ (b)) (ab) (ba) / \ / \
(a2b) (aba) (ab?) \ (a?b) (aba) (ab?) (a2b)/N (aba)/N (ab2)/N

(%) (b%) ((ab)?) ((ba)?) \/

(a) (a%) (a3)/N
\ “quotient of the subgroup”
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The 5th isomorphism theorem: “subgroups and quotients commute’

Key idea
The quotient of a subgroup is just the subgroup of the quotient.

Example: Consider the group G = SL»(Z3).

(a, by/N
quotient G/N %y V4 =2 H/N < G/N
(a2b, ab2) /N (a2b, ab2)/N

(a)/N (b)/N (ab)/N (ba)/N

(a2b)/N <="ba>/N<abz)/N// (a2b)/N (aba)/N (ab?)/N
@)/ (@3)/n
“subgroup of the quotient’
M. Macauley (Clemson) A visual tour of the beauty of group theory TMWYF, October 2021
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What is a group action? (“wrong” answers only)

Definition
A left group action is a mapping

GxS—S, (a,s)—> as

such that
m (ab).s = a.(b.s), foralla,be Gandse S
mes=s, forallsesS.
A right group action is a mapping
GxS—S, (a,s)—>s.a
such that

m s.(ab) = (s.a).b, foralla,be GandseS

mse=s, forallseS.
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Group actions

Imagine a “group switchboard:” every element of D4 = (r, f) has a button, that permutes

the set:
_JJoo 0 0 0]
5‘{ 00 -}
The group action rule
Pressing the a-button followed by the b-button, is the same as pressing the ab-button. J

o o
o o

o

Formally, this is just a homomorphism ¢: G — Perm(S), because

@(ab) = p(a)d(b), foralla,be G.
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Five features of every group action

Every group action has five fundamental features that we will always try to understand.

Local features

m The orbit of s € S is the “what elements can we reach from s7"
orb(s) = {s.#(g9) | g € G}.
m The stabilizer of s in G is “the buttons that fix s”
stab(s) = {g € G | s.¢(g) = s}.
(iii) The fixed point set of g € G are “the set elements fixed by g-button”:

fix(g) = {s € S| s.¢(g) = s}.

Global features
m kernel: Ker(¢) = ﬂ stab(s) “broken buttons”
ses

m fixed points Fix(¢) = ﬂ fix(g) “set elements that never move’
geG
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Local features of our “binary square” example

Orbits: mm

o o
o O

The stabilizers are:

stab():D4, stab(): stab() stab(): stab() =(f)
= {120, rf) stab() = stab(): (r?f)

The fixed point sets are fix(1) = S, and
fix(r) =fix(r*) ={ [ 3]} fix(r?) =fix(rf) = fix(*f)={ [§ 5] 8] [}
fix(f):{’y} fiX(rzf)={v,}
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“Fixed point tables”: a checkmark at (g, s) means g fixes s

1 v v v v v v v
r v

r? v v v

r3 v

f v v v
rf v v v

r2f v v v

r3f v v v

stab(s): read off the column.

fix(g): read off the rows:

Ker(¢): rows with all checkmarks

Fix(¢): columns with all checkmarks

| Orb(¢)| = average #checkmarks per row = 24/|D4| = 3
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Groups acting on themselves by conjugation
1. Orbit-stabilizer theorem. “the size of an orbit is the index of the stabilizer":
|G
|Co(x)]

2. Orbit-counting theorem. “the number of orbits is the average number of elements
fixed by a group element’:

|cle(x)| =[G : Co(x)] =

#£conjugacy classes of G = average size of a centralizer.
Example. Dg = (r, f):
S < < 2 f—> 2f —> r*f
SNS—

0
eﬁ:) (<t e~ rf@/ﬁf

Stabilizers (i.e., centralizers):

stab(r) = stab(r?) = stab(r*) = stab(r®) = (r),

stab(1) = stab(r®) = D, stab(f) = (r*, ), stab(r'f) = (r3, r'f).
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Groups acting on themselves by conjugation

Here is the “fixed point table’. Note that Ker(¢) = Fix(¢) = (r3).

[N]
w
»

5 f f r2f r3f rAf r5f
v v v v v v

\
-
-
-

NENENENENEN S
NN NN
ANENENENENEN
ANENENENENEN

rf
r’f
r3f
r*f

r°f

wU'!
N N RN N N N N N N
AN N N N SN NN

AN
\

v

By the orbit-counting theorem, there are | Orb(¢)| = 72/|Ds| = 6 conjugacy classes.
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Groups acting on subgroups by conjugation
Here is an example of G = A4 = ((123), (12)(34)) acting on its subgroups.

¢A4’2

((12)(34), (13)(24))

YR t)
((123))—((124))  ((134))—((234))

~~ NV
((12)(34))) ((13)(24))  ((14)(23)))

i
Let's take a moment to revisit our “three favorite examples’ from Chapter 3.

N=((12)(34).(13)(24)),  H=((123)), K =((12)(34))-
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Groups acting on subgroups by conjugation

Here is the “fixed point table’. Note that Ker(¢) = {e} and Fix(¢) = {(e), Az, N}.

(e)  ((123))  ((124))  ((134)) ((234)) ((12)(34)) ((13)(24)) ((14)(23))  ((12)(34),(13)(24)) A«

e v v ' v v ' v v v v
(123) ' ' v v
(132) | v v v v
(124) | v v v
(142) ' ' v '
(134) v v '
(143) | v v v
(234) ' v '
(243) v v '
(12)(34) | v v v
(13)(24) | v v v
(14)(23) | v v v v v

By the orbit-counting theorem, there are | Orb(¢)| = 60/|As| = 5 conjugacy classes.
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Groups acting on cosets of H by right-multiplication

The quotient process is done by collapsing the Cayley diagram by the left cosets of H.

In contrast, this action is the result of collapsing the Cayley diagram by the right cosets.
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What are solvable and nilpotent groups (“wrong” answers only)

Definition
A group G is solvable if there are subgroups

1=G <G < <G=6G

such that Gj_; 4 G; and G;/Gj_1 is abelian.

Definition
A group G is nilpotent if there are subgroups

1=244244---42 =G

where Z; = Z(G) and Zi41/Z = Z(G/ Z;).
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Commutator subgroups and abelianizations

The commutator subgroup G’ is the smallest such that G/G' is abelian.
DiCe
Aq
(r)

((12)(34), (13)(24))
(r?)

o 4
N (9 0
AN

() )

(r?) )
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Solvable groups: “lattices we can climb down’

Start at the top of a subgroup lattice, and take successive maximal abelian steps down.

A group is solvable if we reach the bottom.

6/G' = s 73, b)
G’ = (a2b, ab?) G’ = (a2b, ab?)
(@ (b) (ab) (ba)
G'/G" = v, (a2b> <aba> (ab2> (a?b) (aba) (ab?)

(a%)

(b?) ((ab)?) {(ba)?) \ /
— <a3> G/ = <a3> G/ = <a3>
G"/GM" = ¢,
GIII

=(1) GIII=<1> GIII=<1)
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The smallest non-solvable group
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Nilpotent groups: “lattices we can climb up’

Start at the bottom of a lattice. Climb up to the center, Z(G).
Chop everything off below, i.e., take the quotient, G/Z(G).

Repeat this process. If we reach the top, then G is nilpotent.

23=6=6(0) G/Zy
(r2,5) (r) (r2 r .8/ 7y (r/Zy (r2,rs /Zl

SN NN

(s) (sr2) 22=<r2)=G’ (sr) (sr3) ()21 (sr2))zy  Z2/Zy (sr)/Z1 (sr3)/Zy

z; = (%) Z3/7y

Theorem

A group is nilpotent iff it has no fully unnormal subgroups.

In particular, p-groups are nilpotent.

G/Z,

LN

s)/Zy (n/Z>

N

Z3/2y

r 1s)/ 2o
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Inner and outer automorphisms

Conjugating G by a fixed element x € G is an inner automorphism

xDyx~1 XxQex~1
x(r?, F)x1 x(r)xt x{(r?, rfyx 1 *(idxt x()x1 x{k)x~!
/
x(Ax71 x(PHxT x(r)x L x{(rPFxt x(rf)x1 x(—1)x~1
\\ //
x(Lyx~t x (1) x7!

The inner automorphism group is Inn(G) = G/Z(G).

Inner automorphism permute elements within conjugacy classes.

Remark

The group Qg has “outer automorphism(s)’ that permute /, j, and k. J
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Automorphisms of Dy

Dy z rZ fZ rfZ
1 r f| rf cosets of Z(Dy) are
(r?, f) (r) (r?, rf) in bijection with inner
r2 | | r2f | r3f automorphisms of Dy

N N T S (e W )

c()| 1 r f| rf inner automorphisms of
D, permute elements
(1) cl(r2) r? r3 | r2f | r3f within conjugacy classes
Inn(Ds) 2 Da/{(r?) = Vs a(r) d(f) cl(rf)

There is also an outer automorphism
@: Dy — Dy, a(ry=r, of)=rf

that swaps the “two types” of reflections of the square.
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Automorphisms of Qg

Inn(Qs) = Vo Out(Qs) = S3
i 0 0 0p t
1 i J k 1 i J k
Ll |
—j —k —J — —k

-1 —i -1 — —
0y U 9y U t
The group Aut(Qg) acts on the conjugacy classes:

0 0 0 0 0
Cli1 O Cl1D Cf =i +j £k [D

9, U U U U

Overlaying these two diagrams gives

Aut(Qg) = Inn(Qg) X Out(Qg) >V, X S3S,.
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Closing remarks (Are we having fun yet?)

The first introductory algebra book to take a Cayley diagram approach is Visual group
theory by Nathan Carter (2009).

Steven Strogatz called it the “best introduction to group theory, or any branch of higher
mathematics, that I've ever seen.”

However, it's a “general audience” book, not at the level of standard algebra texts.

Dana Ernst (Northern Arizona) has a (googlable) set of IBL notes using a visual approach.

I'm writing a visual algebra book at the approx. level of Dummit & Foote.

I will continue to post all course materials (slides, HW, etc.) on my webpage.
http://www.math.clemson.edu/ "macaule/classes/f21_math4120/

| am happy to share the IATEX source code.

Going forward. . .
m | need a title for my book! Any ideas?

m Nathan, Dana, and | have discussed organizing a workshop or special session on
teaching visual algebra.

m If you like these ideas, please spread the word!

m | would love to explore the pedagogy of this with math ed folk(s).
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Thank you for coming!
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