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Overview

Recall that for H ≤ G , the conjugate subgroup of H by a fixed g ∈ G is

gHg−1 = {ghg−1 | h ∈ H} .

Additionally, H is normal iff gHg−1 = H for all g ∈ G .

We can also fix the element we are conjugating. Given x ∈ G , we may ask:

“which elements can be written as gxg−1 for some g ∈ G?”

The set of all such elements in G is called the conjugacy class of x , denoted clG (x).
Formally, this is the set

clG (x) = {gxg−1 | g ∈ G} .

Remarks

In any group, clG (e) = {e}, because geg−1 = e for any g ∈ G .

If x and g commute, then gxg−1 = x . Thus, when computing clG (x), we only
need to check gxg−1 for those g ∈ G that do not commute with x .

Moreover, clG (x) = {x} iff x commutes with everything in G . (Why?)

M. Macauley (Clemson) Lecture 3.7: Conjugacy classes Math 4120, Modern Algebra 2 / 10

mailto:macaule@clemson.edu


Conjugacy classes

Lemma

Conjugacy is an equivalence relation.

Proof

Reflexive: x = exe−1.

Symmetric: x = gyg−1 ⇒ y = g−1xg .

Transitive: x = gyg−1 and y = hzh−1 ⇒ x = (gh)z(gh)−1. �

Since conjugacy is an equivalence relation, it partitions the group G into equivalence
classes (conjugacy classes).

Let’s compute the conjugacy classes in D4. We’ll start by finding clD4(r). Note that
we only need to compute grg−1 for those g that do not commute with r :

frf −1 = r 3, (rf )r(rf )−1 = r 3, (r 2f )r(r 2f )−1 = r 3, (r 3f )r(r 3f )−1 = r 3.

Therefore, the conjugacy class of r is clD4(r) = {r , r 3}.

Since conjugacy is an equivalence relation, clD4(r 3) = clD4(r) = {r , r 3}.
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Conjugacy classes in D4

To compute clD4(f ), we don’t need to check e, r 2, f , or r 2f , since these all commute
with f :

rfr−1 = r 2f , r 3f (r 3)−1 = r 2f , (rf )f (rf )−1 = r 2f , (r 3f )f (r 3f )−1 = r 2f .

Therefore, clD4(f ) = {f , r 2f }.

What is clD4(rf )? Note that it has size greater than 1 because rf does not commute
with everything in D4.

It also cannot contain elements from the other conjugacy classes. The only element
left is r 3f , so clD4(rf ) = {rf , r 3f }.
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The “Class Equation”, visually:
Partition of D4 by its
conjugacy classes

We can write D4 = {e} ∪ {r 2}︸ ︷︷ ︸
these commute with everything in D4

∪{r , r 3} ∪ {f , r 2f } ∪ {r , r 3f }.
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The class equation

Definition

The center of G is the set Z(G) = {z ∈ G | gz = zg , ∀g ∈ G}.

Observation

clG (x) = {x} if and only if x ∈ Z(G).

Proof

Suppose x is in its own conjugacy class. This means that

clG (x) = {x} ⇐⇒ gxg−1 = x , ∀g ∈ G ⇐⇒ gx = xg , ∀g ∈ G ⇐⇒ x ∈ Z(G) .

�

The Class Equation

For any finite group G , |G | = |Z(G)|+
∑
| clG (xi )|

where the sum is taken over distinct conjugacy classes of size greater than 1.
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More on conjugacy classes

Proposition

Every normal subgroup is the union of conjugacy classes.

Proof

Suppose n ∈ N C G . Then gng−1 ∈ gNg−1 = N, thus if n ∈ N, its entire conjugacy
class clG (n) is contained in N as well. �

Proposition

Conjugate elements have the same order.

Proof

Consider x and y = gxg−1.

If xn = e, then (gxg−1)n = (gxg−1)(gxg−1) · · · (gxg−1) = gxng−1 = geg−1 = e.
Therefore, |x | ≥ |gxg−1|.

Conversely, if (gxg−1)n = e, then gxng−1 = e, and it must follow that xn = e.
Therefore, |x | ≤ |gxg−1|. �
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Conjugacy classes in D6

Let’s determine the conjugacy classes of D6 = 〈r , f | r 6 = e, f 2 = e, r i f = fr−i 〉.

The center of D6 is Z(D6) = {e, r 3}; these are the only elements in size-1 conjugacy
classes.

The only two elements of order 6 are r and r 5; so we must have clD6(r) = {r , r 5}.

The only two elements of order 3 are r 2 and r 4; so we must have clD6(r 2) = {r 2, r 4}.

Let’s compute the conjugacy class of a reflection r i f . We need to consider two cases;
conjugating by r j and by r j f :

r j(r i f )r−j = r j r i r j f = r i+2j f

(r j f )(r i f )(r j f )−1 = (r j f )(r i f )f r−j = r j fr i−j = r j r j−i f = r 2j−i f .

Thus, r i f and r k f are conjugate iff i and k are both even, or both odd.
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The Class Equation, visually:
Partition of D6 by its
conjugacy classes
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Conjugacy “preserves structure”

Think back to linear algebra. Two matrices A and B are similar (=conjugate) if
A = PBP−1.

Conjugate matrices have the same eigenvalues, eigenvectors, and determinant. In
fact, they represent the same linear map, but under a change of basis.

If n is even, then there are two “types” of
reflections of an n-gon: the axis goes
through two corners, or it bisects a pair of
sides.

Notice how in Dn, conjugate reflections have the same “type.” Do you have a guess
of what the conjugacy classes of reflections are in Dn when n is odd?

Also, conjugate rotations in Dn had the same rotating angle, but in the opposite
direction (e.g., r k and rn−k).

Next, we will look at conjugacy classes in the symmetric group Sn. We will see that
conjugate permutations have “the same structure.”
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Cycle type and conjugacy

Definition

Two elements in Sn have the same cycle type if when written as a product of disjoint
cycles, there are the same number of length-k cycles for each k.

We can write the cycle type of a permutation σ ∈ Sn as a list c1, c2, . . . , cn, where ci
is the number of cycles of length i in σ.

Here is an example of some elements in S9 and their cycle types.

(1 8) (5) (2 3) (4 9 6 7) has cycle type 1,2,0,1.

(1 8 4 2 3 4 9 6 7) has cycle type 0,0,0,0,0,0,0,0,1.

e = (1)(2)(3)(4)(5)(6)(7)(8)(9) has cycle type 9.

Theorem

Two elements g , h ∈ Sn are conjugate if and only if they have the same cycle type.

Big idea

Conjugate permutations have the same structure. Such permutations are the same
up to renumbering.
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An example
Consider the following permutations in G = S6:

g = (1 2) 1 2 3 4 5 6

h = (2 3) 1 2 3 4 5 6

r = (1 2 3 4 5 6) 1 2 3 4 5 6

Since g and h have the same cycle type, they are conjugate:

(1 2 3 4 5 6) (2 3) (1 6 5 4 3 2) = (1 2) .

Here is a visual interpretation of g = rhr−1:
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