Lecture 4.6: Automorphisms

Matthew Macauley

Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/

Math 4120, Modern Algebra

Basic concepts

Definition

An automorphism is an isomorphism from a group to itself.

The set of all automorphisms of G forms a group, called the automorphism group of G, and denoted Aut(G).

Remarks.

- An automorphism is determined by where it sends the generators.
- An automorphism ϕ must send generators to generators. In particular, if G is cyclic, then it determines a permutation of the set of (all possible) generators.

Examples

- 1. There are two automorphism of \mathbb{Z} : the identity, and the mapping $n\mapsto -n$. Thus, $\operatorname{Aut}(\mathbb{Z})\cong C_2$.
- 2. Every map $\phi: \mathbb{Z}_5 \to \mathbb{Z}_5$ where $\phi(1) \in \{1, 2, 3, 4\}$ is an automorphism. Thus, $|\operatorname{Aut}(\mathbb{Z}_5)| \cong C_4$ or V_4 . (Which one?)
- 3. An automorphism ϕ of $V_4 = \langle h, v \rangle$ is determined by the image of h and v. There are 3 choices for $\phi(h)$, and then 2 choices for $\phi(v)$. Thus, $|\operatorname{Aut}(V_4)| = 6$, so it is either $C_6 \cong C_2 \times C_3$, or S_3 . (Which one?)

Automorphism groups of \mathbb{Z}_n

Definition

The multiplicative group of integers modulo n, denoted \mathbb{Z}_n^* or U(n), is the group

$$U(n) := \{k \in \mathbb{Z}_n \mid \gcd(n, k) = 1\}$$

where the binary operation is multiplication, modulo n.

= {	1, 3	, 5, 7	7} ≘	≚ C ₂	$\times C_2$
	1	3	5	7	
1	1	3	5	7	
3	3	1	7	5	
5	5	7	1	3	
7	7	5	3	1	

U(8)

Proposition (homework)

The automorphism group of \mathbb{Z}_n is $\operatorname{Aut}(\mathbb{Z}_n) = \{\sigma_a \mid a \in U(n)\} \cong U(n)$, where

$$\sigma_a \colon \mathbb{Z}_n \longrightarrow \mathbb{Z}_n$$
, $\sigma_a(1) = a$.

Automorphisms of D_3

Let's find all automorphisms of $D_3 = \langle r, f \rangle$. We'll see a very similar example to this when we study Galois theory.

Clearly, every automorphism ϕ is completely determined by $\phi(r)$ and $\phi(f)$.

Since automorphisms preserve order, if $\phi \in Aut(D_3)$, then

$$\phi(e) = e$$
, $\phi(r) = \underbrace{r \text{ or } r^2}_{2 \text{ choices}}$, $\phi(f) = \underbrace{f, rf, \text{ or } r^2 f}_{3 \text{ choices}}$.

Thus, there are at most $2 \cdot 3 = 6$ automorphisms of D_3 .

Let's try to define two maps, (i) $\alpha: D_3 \to D_3$ fixing r, and (ii) $\beta: D_3 \to D_3$ fixing f:

$$\begin{cases} \alpha(r) = r \\ \alpha(f) = rf \end{cases} \qquad \begin{cases} \beta(r) = r^2 \\ \beta(f) = f \end{cases}$$

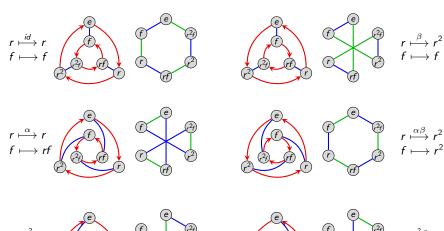
I claim that:

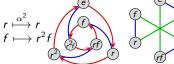
- these both define automorphisms (check this!)
- these generate six different automorphisms, and thus $\langle \alpha, \beta \rangle \cong \operatorname{Aut}(D_3)$.

To determine what group this is isomorphic to, find these six automorphisms, and make a group presentation and/or multiplication table. Is it abelian?

Automorphisms of D_3

An automorphism can be thought of as a re-wiring of the Cayley diagram.

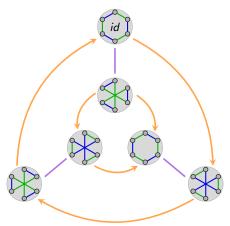




Automorphisms of D_3

Here is the multiplication table and Cayley diagram of Aut $(D_3) = \langle \alpha, \beta \rangle$.

	id	α	α^2	β	$\alpha\beta$	$\alpha^2 \beta$
id	id	α	α^2	β	$\alpha\beta$	$\alpha^2\beta$
α	α	α^2	id	$\alpha\beta$	$\alpha^2 \beta$	β
α^2	α^2	id	α	$\alpha^2 \beta$	β	$\alpha\beta$
β	β	$\alpha^2\beta$	$\alpha\beta$	id	α^2	α
$\alpha\beta$	$\alpha\beta$	β	$\alpha^2 \beta$	α	id	α^2
$\alpha^2\beta$	$\alpha^2\beta$	$\alpha\beta$	β	α^2	α	id



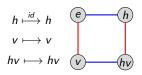
It is a coincidence that $Aut(D_3) \cong D_3$. For example, we've already seen that

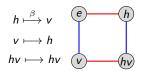
$$\operatorname{Aut}(\mathbb{Z}_5) \cong U(5) \cong C_4$$
.

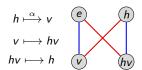
$$\operatorname{\mathsf{Aut}}(\mathbb{Z}_6) \cong U(5) \cong C_4$$
.

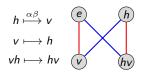
$$\operatorname{Aut}(\mathbb{Z}_5) \cong U(5) \cong C_4$$
, $\operatorname{Aut}(\mathbb{Z}_6) \cong U(5) \cong C_4$, $\operatorname{Aut}(\mathbb{Z}_8) \cong U(5) \cong C_2 \times C_2$.

Automorphisms of V_4





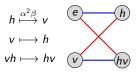




$$h \stackrel{\alpha^2}{\longmapsto} hv \qquad e \qquad h$$

$$v \longmapsto h$$

$$hv \longmapsto v \qquad v \qquad hv$$

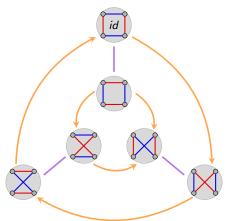


Notice that α is the permutation h = v - hv and β is the permutation h = v - hv

Automorphisms of V_4

Here is the multiplication table and Cayley diagram of $\operatorname{Aut}(V_4) = \langle \alpha, \beta \rangle \cong D_3$.

	id	α	α^2	β	$\alpha\beta$	$\alpha^2\beta$
id	id	α	α^2	β	$\alpha\beta$	$\alpha^2\beta$
α	α	α^2	id	$\alpha\beta$	$\alpha^2 \beta$	β
α^2	α^2	id	α	$\alpha^2\beta$	β	$\alpha\beta$
β	β	$\alpha^2\beta$	$\alpha\beta$	id	α^2	α
$\alpha\beta$	$\alpha\beta$	β	$\alpha^2 \beta$	α	id	α^2
$\alpha^2\beta$	$\alpha^2\beta$	$\alpha\beta$	β	α^2	α	id



Recall that α and β can be thought of as the permutations h and h are h and h and h and h are h and h and h are h are h and h are h are h and h are h are h are h are h are h and h are h and h are h are