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Paris, May 31, 1832

The night before a duel that Évariste Galois
knew he would lose, the 20-year-old stayed up
late preparing his mathematical findings in a
letter to Auguste Chevalier.

Hermann Weyl (1885–1955) said “This letter,
if judged by the novelty and profundity of
ideas it contains, is perhaps the most
substantial piece of writing in the whole
literature of mankind.”

Fundamental theorem of Galois theory

Given f ∈ Z[x ], let F be the splitting field of f , and G the Galois group. Then the
following hold:

(a) The subgroup lattice of G is identical to the subfield lattice of F , but
upside-down. Moreover, H C G if and only if the corresponding subfield is a
normal extension of Q.

(b) Given an intermediate field Q ⊂ K ⊂ F , the corresponding subgroup H < G
contains precisely those automorphisms that fix K .
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An example: the Galois correspondence for f (x) = x3 − 2
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Subgroup lattice of Gal(Q(ζ, 3

√
2)) ∼= D3.

The automorphisms that fix Q are precisely those in D3.

The automorphisms that fix Q(ζ) are precisely those in 〈r〉.
The automorphisms that fix Q( 3

√
2) are precisely those in 〈f 〉.

The automorphisms that fix Q(ζ 3
√

2) are precisely those in 〈rf 〉.
The automorphisms that fix Q(ζ2 3

√
2) are precisely those in 〈r 2f 〉.

The automorphisms that fix Q(ζ, 3
√

2) are precisely those in 〈e〉.

The normal field extensions of Q are: Q, Q(ζ), and Q(ζ, 3
√

2).

The normal subgroups of D3 are: D3, 〈r〉 and 〈e〉.
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Solvability

Definition

A group G is solvable if it has a chain of subgroups:

{e} = N0 C N1 C N2 C · · ·C Nk−1 C Nk = G .

such that each quotient Ni/Ni−1 is abelian.

Note: Each subgroup Ni need not be normal in G , just in Ni+1.

Examples

D4 = 〈r , f 〉 is solvable. There are many possible chains:

〈e〉C 〈f 〉C 〈r 2, f 〉C D4 , 〈e〉C 〈r〉C D4 , 〈e〉C 〈r 2〉C D4.

Any abelian group A is solvable: take N0 = {e} and N1 = A.

For n ≥ 5, the group An is simple and non-abelian. Thus, the only chain of
normal subgroups is

N0 = {e}C An = N1 .

Since N1/N0
∼= An is non-abelian, An is not solvable for n ≥ 5.
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Some more solvable groups

D3
∼= S3 is solvable: {e}C 〈r〉C D3.

{e}

〈rf 〉 〈r2f 〉〈f 〉

〈r〉

D3 = 〈r, f 〉

〈r〉
{e}
∼= C3, abelian

D3
〈r〉
∼= C2, abelian

{e}

C2

C3 C3 C3 C3

C4C4 C4

C6 C6 C6 C6

Q8

G

Q4
C2
∼=V4,

abelian

C2
{e}
∼= C2,

abelian

G
Q4
∼= C3, abelian

The group above at right has order 24, and is the smallest solvable group that
requires a three-step chain of normal subgroups.
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The hunt for an unsolvable polynomial

The following lemma follows from the Correspondence Theorem. (Why?)

Lemma

If N C G , then G is solvable if and only if both N and G/N are solvable.

Corollary

Sn is not solvable for all n ≥ 5. (Since An C Sn is not solvable).

Galois’ theorem

A field extension E ⊇ Q contains only elements expressible by radicals if and only if
its Galois group is solvable.

Corollary

f (x) is solvable by radicals if and only if it has a solvable Galois group.

Thus, any polynomial with Galois group S5 is not solvable by radicals!
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An unsolvable quintic!

To find a polynomial not solvable by radicals, we’ll look for a polynomial f (x) with
Gal(f (x)) ∼= S5.

We’ll restrict our search to degree-5 polynomials, because Gal(f (x)) ≤ S5 for any
degree-5 polynomial f (x).

Key observation

Recall that for any 5-cycle σ and 2-cycle (=transposition) τ ,

S5 = 〈σ, τ〉 .

Moreover, the only elements in S5 of order 5 are 5-cycles, e.g., σ = (a b c d e).

Let f (x) = x5 + 10x4 − 2. It is irreducible by Eisenstein’s criterion (use p = 2). Let
F = Q(r1, . . . , r5) be its splitting field.

Basic calculus tells us that f exactly has 3 real roots. Let r1, r2 = a± bi be the
complex roots, and r3, r4, and r5 be the real roots.

Since f has distinct complex conjugate roots, complex conjugation is an
automorphism τ : F −→ F that transposes r1 with r2, and fixes the three real roots.
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An unsolvable quintic!

We just found our transposition τ = (r1 r2). All that’s left is to find an element (i.e.,
an automorphism) σ of order 5.

Take any root ri of f (x). Since f (x) is irreducible, it is the minimal polynomial of ri .
By the Degree Theorem,

[Q(ri ) : Q] = deg(minimum polynomial of ri ) = deg f (x) = 5 .

The splitting field of f (x) is F = Q(r1, . . . , r5), and by the normal extension theorem,
the degree of this extension over Q is the order of the Galois group Gal(f (x)).

Applying the tower law to this yields

|Gal(f (x))| = [Q(r1, r2, r3, r4, r5) : Q] = [Q(r1, r2, r3, r4, r5) : Q(r1)] [Q(r1) : Q]︸ ︷︷ ︸
=5

Thus, |Gal(f (x))| is a multiple of 5, so Cauchy’s theorem guarantees that G has an
element σ of order 5.

Since Gal(f (x)) has a 2-cycle τ and a 5-cycle σ, it must be all of S5.

Gal(f (x)) is an unsolvable group, so f (x) = x5 + 10x4 − 2 is unsolvable by radicals!
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Summary of Galois’ work

Let f (x) be a degree-n polynomial in Z[x ] (or Q[x ]). The roots of f (x) lie in some
splitting field F ⊇ Q.

The Galois group of f (x) is the automorphism group of F . Every such automorphism
fixes Q and permutes the roots of f (x).

This is a group action of Gal(f (x)) on the set of n roots! Thus, Gal(f (x)) ≤ Sn.

There is a 1–1 correspondence between subfields of F and subgroups of Gal(f (x)).

A polynomial is solvable by radicals iff its Galois group is a solvable group.

The symmetric group S5 is not a solvable group.

Since S5 = 〈τ, σ〉 for a 2-cycle τ and 5-cycle σ, all we need to do is find a degree-5
polynomial whose Galois group contains a 2-cycle and an element of order 5.

If f (x) is an irreducible degree-5 polynomial with 3 real roots, then complex
conjugation is an automorphism that transposes the 2 complex roots. Moreover,
Cauchy’s theorem tells us that Gal(f (x)) must have an element of order 5.

Thus, f (x) = x5 + 10x4 − 2 is not solvable by radicals!
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