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Motivation (spoilers!)
Many of the big ideas from group homomorphisms carry over to ring homomorphisms.

Group theory

The quotient group G/N exists iff N is a normal subgroup.

A homomorphism is a structure-preserving map: f (x ∗ y) = f (x) ∗ f (y).

The kernel of a homomorphism is a normal subgroup: Ker φE G .

For every normal subgroup N E G , there is a natural quotient homomorphism
φ : G → G/N, φ(g) = gN.

There are four standard isomorphism theorems for groups.

Ring theory

The quotient ring R/I exists iff I is a two-sided ideal.

A homomorphism is a structure-preserving map: f (x + y) = f (x) + f (y) and
f (xy) = f (x)f (y).

The kernel of a homomorphism is a two-sided ideal: Ker φE R.

For every two-sided ideal I E R, there is a natural quotient homomorphism
φ : R → R/I , φ(r) = r + I .

There are four standard isomorphism theorems for rings.
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Ring homomorphisms

Definition

A ring homomorphism is a function f : R → S satisfying

f (x + y) = f (x) + f (y) and f (xy) = f (x)f (y) for all x , y ∈ R.

A ring isomorphism is a homomorphism that is bijective.

The kernel f : R → S is the set Ker f := {x ∈ R : f (x) = 0}.

Examples

1. The function φ : Z→ Zn that sends k 7→ k (mod n) is a ring homomorphism
with Ker(φ) = nZ.

2. For a fixed real number α ∈ R, the “evaluation function”

φ : R[x ] −→ R , φ : p(x) 7−→ p(α)

is a homomorphism. The kernel consists of all polynomials that have α as a root.

3. The following is a homomorphism, for the ideal I = (x2 + x + 1) in Z2[x ]:

φ : Z2[x ] −→ Z2[x ]/I , f (x) 7−→ f (x) + I .
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The isomorphism theorems for rings

Fundamental homomorphism theorem

If φ : R → S is a ring homomorphism, then Ker φ is an ideal and Im(φ) ∼= R/Ker(φ).

R

(I = Ker φ)

φ

any homomorphism

R
/
Ker φ

quotient
ring

Imφ ≤ S

q
quotient
process

g
remaining isomorphism
(“relabeling”)

Proof (HW)

The statement holds for the underlying additive group R. Thus, it remains to show
that Ker φ is a (two-sided) ideal, and the following map is a ring homomorphism:

g : R/I −→ Imφ , g(x + I ) = φ(x) .
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The second isomorphism theorem for rings

Suppose S is a subring and I an ideal of R. Then

(i) The sum S + I = {s + i | s ∈ S , i ∈ I} is a subring of R
and the intersection S ∩ I is an ideal of S .

(ii) The following quotient rings are isomorphic:

(S + I )/I ∼= S/(S ∩ I ) .

R

S + I

|||
| AAA
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S I

S ∩ I

BBBB }}}}

Proof (sketch)

S + I is an additive subgroup, and it’s closed under multiplication because

s1, s2 ∈ S , i1, i2 ∈ I =⇒ (s1 + i1)(s2 + i2) = s1s2︸︷︷︸
∈S

+ s1i2 + i1s2 + i1i2︸ ︷︷ ︸
∈I

∈ S + I .

Showing S ∩ I is an ideal of S is straightforward (homework exercise).

We already know that (S + I )/I ∼= S/(S ∩ I ) as additive groups.

One explicit isomorphism is φ : s + (S ∩ I ) 7→ s + I . It is easy to check that φ : 1 7→ 1
and φ preserves products. �
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The third isomorphism theorem for rings

Freshman theorem

Suppose R is a ring with ideals J ⊆ I . Then I/J is an ideal of R/J and

(R/J)/(I/J) ∼= R/I .

(Thanks to Zach Teitler of Boise State for the concept and graphic!)
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The fourth isomorphism theorem for rings

Correspondence theorem

Let I be an ideal of R. There is a bijective correspondence between subrings (&
ideals) of R/I and subrings (& ideals) of R that contain I . In particular, every ideal
of R/I has the form J/I , for some ideal J satisfying I ⊆ J ⊆ R.

R

I1 S1 I3

I2 S2 S3 I4

I

subrings & ideals that contain I

R/I

I1/I S1/I I3/I

I2/I S2/I S3/I I4/I

0

subrings & ideals of R/I
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Maximal ideals

Definition

An ideal I of R is maximal if I 6= R and if I ⊆ J ⊆ R holds for some ideal J, then
J = I or J = R.

A ring R is simple if its only (two-sided) ideals are 0 and R.

Examples

1. If n 6= 0, then the ideal M = (n) of R = Z is maximal if and only if n is prime.

2. Let R = Q[x ] be the set of all polynomials over Q. The ideal M = (x)
consisting of all polynomials with constant term zero is a maximal ideal.

Elements in the quotient ring Q[x ]/(x) have the form f (x) + M = a0 + M.

3. Let R = Z2[x ], the polynomials over Z2. The ideal M = (x2 + x + 1) is
maximal, and R/M ∼= F4, the (unique) finite field of order 4.

In all three examples above, the quotient R/M is a field.
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Maximal ideals

Theorem

Let R be a commutative ring with 1. The following are equivalent for an ideal I ⊆ R.

(i) I is a maximal ideal;

(ii) R/I is simple;

(iii) R/I is a field.

Proof

The equivalence (i)⇔(ii) is immediate from the Correspondence Theorem.

For (ii)⇔(iii), we’ll show that an arbitrary ring R is simple iff R is a field.

“⇒”: Assume R is simple. Then (a) = R for any nonzero a ∈ R.

Thus, 1 ∈ (a), so 1 = ba for some b ∈ R, so a ∈ U(R) and R is a field. X

“⇐”: Let I ⊆ R be a nonzero ideal of a field R. Take any nonzero a ∈ I .

Then a−1a ∈ I , and so 1 ∈ I , which means I = R. X �
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Prime ideals

Definition

Let R be a commutative ring. An ideal P ⊂ R is prime if ab ∈ P implies either a ∈ P
or b ∈ P.

Note that p ∈ N is a prime number iff p = ab implies either a = p or b = p.

Examples

1. The ideal (n) of Z is a prime ideal iff n is a prime number (possibly n = 0).

2. In the polynomial ring Z[x ], the ideal I = (2, x) is a prime ideal. It consists of all
polynomials whose constant coefficient is even.

Theorem

An ideal P ⊆ R is prime iff R/P is an integral domain.

The proof is straightforward (HW). Since fields are integral domains, the following is
immediate:

Corollary

In a commutative ring, every maximal ideal is prime.
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