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Homomorphisms

Throughout the course, we’ve said things like:

“This group has the same structure as that group.”

“This group is isomorphic to that group.”

However, we’ve never really spelled out the details about what this means.

We will study a special type of function between groups, called a homomorphism. An
isomorphism is a special type of homomorphism. The Greek roots “homo” and
“morph” together mean “same shape.”

There are two situations where homomorphisms arise:

when one group is a subgroup of another;

when one group is a quotient of another.

The corresponding homomorphisms are called embeddings and quotient maps.

Also in this chapter, we will completely classify all finite abelian groups, and get a
taste of a few more advanced topics, such as the the four “isomorphism theorems,”
commutator subgroups, and automorphisms.
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A motivating example
Consider the statement: Z3 < D3. Here is a visual:

0

12

f

rfr2 f

e

r2 r

0 7→ e

1 7→ r

2 7→ r 2

The group D3 contains a size-3 cyclic subgroup 〈r〉, which is identical to Z3 in
structure only. None of the elements of Z3 (namely 0, 1, 2) are actually in D3.

When we say Z3 < D3, we really mean that the structure of Z3 shows up in D3.

In particular, there is a bijective correspondence between the elements in Z3 and
those in the subgroup 〈r〉 in D3. Furthermore, the relationship between the
corresponding nodes is the same.

A homomorphism is the mathematical tool for succinctly expressing precise structural
correspondences. It is a function between groups satisfying a few “natural”
properties.
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Homomorphisms

Using our previous example, we say that
this function maps elements of Z3 to
elements of D3. We may write this as

φ : Z3 −→ D3 .

0

12

f

rfr2 f

e

r2 r

φ(n) = rn

The group from which a function originates is the domain (Z3 in our example). The
group into which the function maps is the codomain (D3 in our example).

The elements in the codomain that the function maps to are called the image of the
function ({e, r , r 2} in our example), denoted Im(φ). That is,

Im(φ) = φ(G) = {φ(g) | g ∈ G} .

Definition

A homomorphism is a function φ : G → H between two groups satisfying

φ(ab) = φ(a)φ(b), for all a, b ∈ G .

Note that the operation a · b is occurring in the domain while φ(a) · φ(b) occurs in
the codomain.
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Homomorphisms

Remark

Not every function from one group to another is a homomorphism! The condition
φ(ab) = φ(a)φ(b) means that the map φ preserves the structure of G .

The φ(ab) = φ(a)φ(b) condition has visual interpretations on the level of Cayley
diagrams and multiplication tables.

Multiplication

tables

Cayley
diagrams

ab = c

Domain
a

c

b

a

b

c

Codomain
φ(a)

φ(c)

φ(b)
φ

φ

φ(a)φ(b)=φ(c)

φ(a)

φ(b)

φ(c)

Note that in the Cayley diagrams, b and φ(b) are paths; they need not just be edges.
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An example
Consider the function φ that reduces an integer modulo 5:

φ : Z −→ Z5 , φ(n) = n (mod 5).

Since the group operation is additive, the “homomorphism property” becomes

φ(a + b) = φ(a) + φ(b) .

In plain English, this just says that one can “first add and then reduce modulo 5,”
OR “first reduce modulo 5 and then add.”

Addition
tables

Cayley
diagrams

Domain: Z
19

27

8

19

8

27

Codomain: Z5

4

2

3
φ

φ 4

3

2
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Types of homomorphisms

Consider the following homomorphism θ : Z3 → C6, defined by θ(n) = r 2n:

0

12

1

r

r2

r3

r4

r5
0 7→ 1

1 7→ r2

2 7→ r4

It is easy to check that θ(a + b) = θ(a)θ(b): The red-arrow in Z3 (representing 1)
gets mapped to the 2-step path representing r 2 in C6.

A homomorphism φ : G → H that is one-to-one or “injective” is called an
embedding: the group G “embeds” into H as a subgroup. If θ is not one-to-one,
then it is a quotient.

If φ(G) = H, then φ is onto, or surjective.

Definition

A homomorphism that is both injective and surjective is an isomorphism.

An automorphism is an isomorphism from a group to itself.
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Homomorphisms and generators

Remark

If we know where a homomorphism maps the generators of G , we can determine
where it maps all elements of G .

For example, suppose φ : Z3 → Z6 was a homomorphism, with φ(1) = 4. Using this
information, we can construct the rest of φ:

φ(2) = φ(1 + 1) = φ(1) + φ(1) = 4 + 4 = 2

φ(0) = φ(1 + 2) = φ(1) + φ(2) = 4 + 2 = 0.

Example

Suppose that G = 〈a, b〉, and φ : G → H, and we know φ(a) and φ(b). Using this
information we can determine the image of any element in G . For example, for
g = a3b2ab, we have

φ(g) = φ(aaabbab) = φ(a)φ(a)φ(a)φ(b)φ(b)φ(a)φ(b).

What do you think φ(a−1) is?
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Two basic properties of homomorphisms

Proposition

Let φ : G → H be a homomorphism. Denote the identity of G by 1G , and the
identity of H by 1H .

(i) φ(1G ) = 1H “φ sends the identity to the identity”

(ii) φ(g−1) = φ(g)−1 “φ sends inverses to inverses”

Proof

(i) Pick any g ∈ G . Now, φ(g) ∈ H; observe that

φ(1G )φ(g) = φ(1G · g) = φ(g) = 1H · φ(g) .

Therefore, φ(1G ) = 1H . X

(ii) Take any g ∈ G . Observe that

φ(g)φ(g−1) = φ(gg−1) = φ(1G ) = 1H .

Since φ(g)φ(g−1) = 1H , it follows immediately that φ(g−1) = φ(g)−1. X �
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A word of caution

Just because a homomorphism φ : G → H is determined by the image of its
generators does not mean that every such image will work.

For example, suppose we try to define a homomorphism φ : Z3 → Z4 by φ(1) = 1.
Then we get

φ(2) = φ(1 + 1) = φ(1) + φ(1) = 2,

φ(0) = φ(1 + 1 + 1) = φ(1) + φ(1) + φ(1) = 3 .

This is impossible, because φ(0) = 0. (Identity is mapped to the identity.)

That’s not to say that there isn’t a homomorphism φ : Z3 → Z4; note that there is
always the trivial homomorphism between two groups:

φ : G −→ H , φ(g) = 1H for all g ∈ G .

Exercise

Show that there is no embedding φ : Zn ↪→ Z, for n ≥ 2. That is, any such
homomorphism must satisfy φ(1) = 0.

M. Macauley (Clemson) Section 4: Maps between groups Math 4120, Modern Algebra 10 / 51

mailto:macaule@clemson.edu


Isomorphisms

Two isomorphic groups may name their elements differently and may look different
based on the layouts or choice of generators for their Cayley diagrams, but the
isomorphism between them guarantees that they have the same structure.

When two groups G and H have an isomorphism between them, we say that G and
H are isomorphic, and write G ∼= H.

The roots of the polynomial f (x) = x4 − 1 are called the 4th roots of unity, and
denoted R(4) := {1, i ,−1,−i}. They are a subgroup of C∗ := C \ {0}, the nonzero
complex numbers under multiplication.

The following map is an isomorphism between Z4 and R(4).

φ : Z4 −→ R(4) , φ(k) = ik .

0

1

2

3
1

i

−1

−i
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Isomorphisms

Sometimes, the isomorphism is less visually obvious because the Cayley graphs have
different structure.

For example, the following is an isomorphism:

φ : Z6 −→ C6

φ(k) = r k

0

1

2

3

4

5
r3

r5r

1

r4 r2

Here is another non-obvious isomorphism between S3 = 〈(12), (23)〉 and D3 = 〈r , f 〉.

1
3 2

f
r2f

r

φ : S3 −→ D3

φ : (12) 7−→ r 2f

φ : (23) 7−→ f

e

(12)

(132)

(13)

(132)

(23) f

rfr2f

e

r2 r
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Another example: the quaternions

Let GLn(R) be the set of invertible n × n matrices with real-valued entries. It is easy
to see that this is a group under multiplication.

Recall the quaternion group Q8 = 〈i , j , k | i2 = j2 = k2 = −1, ij = k〉.

The following set of 8 matrices forms an isomorphic group under multiplication,
where I is the 4× 4 identity matrix:{

±I , ±

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, ±

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, ±

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]}
.

Formally, we have an embedding φ : Q8 → GL4(R) where

φ(i) =

[
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

]
, φ(j) =

[
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

]
, φ(k) =

[
0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

]
.

We say that Q8 is represented by a set of matrices.

Many other groups can be represented by matrices. Can you think of how to
represent V4, Cn, or Sn, using matrices?
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Quotient maps

Consider a homomorphism where more than one element of the domain maps to the
same element of the codomain (i.e., non-embeddings).

Here are some examples.

τ1 : Q8 → V4

1 i

kj

−1 −i

−k−j

e h

v r

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

τ2 : Z10 → Z6

Non-embedding homomorphisms are called quotient maps (as we’ll see, they
correspond to our quotient process).
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Preimages

Definition

If φ : G → H is a homomorphism and h ∈ Im(φ) < H, define the preimage of h to be
the set

φ−1(h) := {g ∈ G : φ(g) = h} .

Observe in the previous examples that the preimages all had the same structure. This
always happens.

•

•

a1

a2

p

A

•

•

b1

b2

p

B

• a

• b
...

...

φ

Domain

Codomain

The preimage of 1H ∈ H is called the kernel of φ, denoted Ker φ.
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Preimages

Observation 1

All preimages of φ have the same structure.

Proof (sketch)

Pick two elements a, b ∈ φ(G), and let A = φ−1(a) and B = φ−1(b) be their
preimages.

Consider any path a1
p−→ a2 between elements in A. For any b1 ∈ B, there is a

corresponding path b1
p−→ b2. We need to show that b2 ∈ B.

Since homomorphisms preserve structure, φ(a1)
φ(p)−→ φ(a2). Since φ(a1) = φ(a2),

φ(p) is the trivial path.

Therefore, φ(b1)
φ(p)−→ φ(b2), i.e., φ(b1) = φ(b2), and so by definition, b2 ∈ B. �

Clearly, G is partitioned by preimages of φ. Additionally, we just showed that they all
have the same structure. (Sound familiar?)
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Preimages and kernels

Definition

The kernel of a homomorphism φ : G → H is the set

Ker(φ) := φ−1(e) = {k ∈ G : φ(k) = e} .

Observation 2

(i) The preimage of the identity (i.e., K = Ker(φ)) is a subgroup of G .

(ii) All other preimages are left cosets of K .

Proof (of (i))

Let K = Ker(φ), and take a, b ∈ K . We must show that K satisfies 3 properties:

Identity: φ(e) = e. X

Closure: φ(ab) = φ(a)φ(b) = e · e = e. X

Inverses: φ(a−1) = φ(a)−1 = e−1 = e. X

Thus, K is a subgroup of G . �
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Kernels

Observation 3

Ker(φ) is a normal subgroup of G .

Proof

Let K = Ker(φ). We will show that if k ∈ K , then gkg−1 ∈ K . Take any g ∈ G , and
observe that

φ(gkg−1) = φ(g)φ(k)φ(g−1) = φ(g) · e · φ(g−1) = φ(g)φ(g)−1 = e .

Therefore, gkg−1 ∈ Ker(φ), so K E G . �

Key observation

Given any homomorphism φ : G → H, we can always form the quotient group
G/Ker(φ).
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Quotients: via multiplication tables

Recall that C2 = {e0πi , e1πi} = {1,−1}. Consider the following (quotient)
homomorphism:

φ : D4 −→ C2 , defined by φ(r) = 1 and φ(f ) = −1 .

Note that φ(rotation) = 1 and φ(reflection) = −1.

The quotient process of “shrinking D4 down to C2” can be clearly seen from the
multiplication tables.

e

r

r2

r3

f

rf

r2f

r3f

e r r2 r3 f rf r2f r3f

e

r

r2

r3

f

rf

r2f

r3f

r

r2

r3

e

r3f

f

rf

r2f

r2

r3

e

r

r2f

r3f

f

rf

r3

e

r

r2

rf

r2f

r3f

f

f

rf

r2f

r3f

e

r

r2

r3

rf

r2f

r3f

f

r3

e

r

r2

r2f

r3f

f

rf

r2

r3

e

r

r3f

f

rf

r2f

r

r2

r3

e

e

r

r2

r3

f

rf

r2f

r3f

e r r2 r3 f rf r2f r3f

e

r

r2

r3

f

rf

r2f

r3f

r

r2

r3

e

r3f

f

rf

r2f

r2

r3

e

r

r2f

r3f

f

rf

r3

e

r

r2

rf

r2f

r3f

f

f

rf

r2f

r3f

e

r

r2

r3

rf

r2f

r3f

f

r3

e

r

r2

r2f

r3f

f

rf

r2

r3

e

r

r3f

f

rf

r2f

r

r2

r3

e

non-flip flip

flip non-flip

1

−1

1 −1
1

−1
−1
1

M. Macauley (Clemson) Section 4: Maps between groups Math 4120, Modern Algebra 19 / 51

mailto:macaule@clemson.edu


Quotients: via Cayley diagrams

Define the homomorphism φ : Q8 → V4 via φ(i) = v and φ(j) = h. Since Q8 = 〈i , j〉,
we can determine where φ sends the remaining elements:

φ(1) = e , φ(−1) = φ(i2) = φ(i)2 = v 2 = e ,

φ(k) = φ(ij) = φ(i)φ(j) = vh = r , φ(−k) = φ(ji) = φ(j)φ(i) = hv = r ,

φ(−i) = φ(−1)φ(i) = ev = v , φ(−j) = φ(−1)φ(j) = eh = h .

Note that Ker φ = {−1, 1}. Let’s see what happens when we quotient out by Ker φ:

1 i

kj

−1 −i

−k−j

Q8

Q8 organized by the
subgroup K = 〈−1〉

1 i

kj

−1 −i

−k−j

K

jK

iK

kK

Q8

left cosets of K
are near each other

K iK

jK kK

Q8/K

collapse cosets
into single nodes

Do you notice any relationship between Q8/Ker(φ) and Im(φ)?
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The Fundamental Homomorphism Theorem

The following is one of the central results in group theory.

Fundamental homomorphism theorem (FHT)

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

The FHT says that every homomorphism can be decomposed into two steps: (i)
quotient out by the kernel, and then (ii) relabel the nodes via φ.

G

(Ker φE G)

φ

any homomorphism

G
/
Ker φ

group of
cosets

Imφ

q
quotient
process

i
remaining isomorphism

(“relabeling”)

M. Macauley (Clemson) Section 4: Maps between groups Math 4120, Modern Algebra 21 / 51

mailto:macaule@clemson.edu


Proof of the FHT

Fundamental homomorphism theorem

If φ : G → H is a homomorphism, then Im(φ) ∼= G/Ker(φ).

Proof

We will construct an explicit map i : G/Ker(φ) −→ Im(φ) and prove that it is an
isomorphism.

Let K = Ker(φ), and recall that G/K = {aK : a ∈ G}. Define

i : G/K −→ Im(φ) , i : gK 7−→ φ(g) .

• Show i is well-defined : We must show that if aK = bK , then i(aK) = i(bK).

Suppose aK = bK . We have

aK = bK =⇒ b−1aK = K =⇒ b−1a ∈ K .

By definition of b−1a ∈ Ker(φ),

1H = φ(b−1a) = φ(b−1)φ(a) = φ(b)−1 φ(a) =⇒ φ(a) = φ(b) .

By definition of i : i(aK) = φ(a) = φ(b) = i(bK). X
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Proof of FHT (cont.) [Recall: i : G/K → Im(φ) , i : gK 7→ φ(g)]

Proof (cont.)

• Show i is a homomorphism : We must show that i(aK · bK) = i(aK) i(bK).

i(aK · bK) = i(abK) (aK · bK := abK)

= φ(ab) (definition of i)

= φ(a)φ(b) (φ is a homomorphism)

= i(aK) i(bK) (definition of i)

Thus, i is a homomorphism. X

• Show i is surjective (onto) :

This means showing that for any element in the codomain (here, Im(φ)), that some
element in the domain (here, G/K) gets mapped to it by i .

Pick any φ(a) ∈ Im(φ). By defintion, i(aK) = φ(a), hence i is surjective. X

M. Macauley (Clemson) Section 4: Maps between groups Math 4120, Modern Algebra 23 / 51

mailto:macaule@clemson.edu


Proof of FHT (cont.) [Recall: i : G/K → Im(φ) , i : gK 7→ φ(g)]

Proof (cont.)

• Show i is injective (1–1) : We must show that i(aK) = i(bK) implies aK = bK .

Suppose that i(aK) = i(bK). Then

i(aK) = i(bK) =⇒ φ(a) = φ(b) (by definition)

=⇒ φ(b)−1 φ(a) = 1H

=⇒ φ(b−1a) = 1H (φ is a homom.)

=⇒ b−1a ∈ K (definition of Ker(φ))

=⇒ b−1aK = K (aH = H ⇔ a ∈ H)

=⇒ aK = bK

Thus, i is injective. X

In summary, since i : G/K → Im(φ) is a well-defined homomorphism that is injective
(1–1) and surjective (onto), it is an isomorphism.

Therefore, G/K ∼= Im(φ), and the FHT is proven. �
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Consequences of the FHT

Corollary

If φ : G → H is a homomorphism, then Imφ ≤ H.

A few special cases

If φ : G → H is an embedding, then Ker(φ) = {1G}. The FHT says that

Im(φ) ∼= G/{1G} ∼= G .

If φ : G → H is the map φ(g) = 1H for all h ∈ G , then Ker(φ) = G , so the FHT
says that

{1H} = Im(φ) ∼= G/G .

Let’s use the FHT to determine all homomorphisms φ : C4 → C3:

By the FHT, G/Ker φ ∼= Imφ < C3, and so | Imφ| = 1 or 3.

Since Ker φ < C4, Lagrange’s Theorem also tells us that |Ker φ| ∈ {1, 2, 4}, and
hence | Imφ| = |G/Ker φ| ∈ {1, 2, 4}.

Thus, | Imφ| = 1, and so the only homomorphism φ : C4 → C3 is the trivial one.
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What does “well-defined” really mean?

Recall that we’ve seen the term “well-defined” arise in different contexts:

a well-defined binary operation on a set G/N of cosets,

a well-defined function i : G/N → H from a set (group) of cosets.

In both of these cases, well-defined means that:

our definition doesn’t depend on our choice of coset representative.

Formally:

If N E G , then aN · bN := abN is a well-defined binary operation on the set
G/N of cosets, because

if a1N = a2N and b1N = b2N, then a1b1N = a2b2N.

The map i : G/K → H, where i(aK) = φ(a), is a well-defined homomorphism,
meaning that

if aK = bK , then i(aK) = i(bK) (that is, φ(a) = φ(b)) holds.

Whenever we define a map and the domain is a quotient, we must show it’s
well-defined.
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How to show two groups are isomorphic

The standard way to show G ∼= H is to construct an isomorphism φ : G → H.

When the domain is a quotient, there is another method, due to the FHT.

Useful technique

Suppose we want to show that G/N ∼= H. There are two approaches:

(i) Define a map φ : G/N → H and prove that it is well-defined, a homomorphism,
and a bijection.

(ii) Define a map φ : G → H and prove that it is a homomorphism, a surjection
(onto), and that Ker φ = N.

Usually, Method (ii) is easier. Showing well-definedness and injectivity can be tricky.

For example, each of the following are results that we will see very soon, for which
(ii) works quite well:

Z/〈n〉 ∼= Zn;

Q∗/〈−1〉 ∼= Q+;

AB/B ∼= A/(A ∩ B) (assuming A,B E G);

G/(A ∩ B) ∼= (G/A)× (G/B) (assuming G = AB).
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Cyclic groups as quotients
Consider the following normal subgroup of Z:

12Z = 〈12〉 = {. . . ,−24,−12, 0, 12, 24, . . . }C Z .

The elements of the quotient group Z/〈12〉 are the cosets:

0 + 〈12〉 , 1 + 〈12〉 , 2 + 〈12〉 , . . . , 10 + 〈12〉 , 11 + 〈12〉 .

Number theorists call these sets congruence classes modulo 12. We say that two
numbers are congruent mod 12 if they are in the same coset.

Recall how to add cosets in the quotient group:

(a + 〈12〉) + (b + 〈12〉) := (a + b) + 〈12〉 .

“(The coset containing a) + (the coset containing b) = the coset containing a + b.”

It should be clear that Z/〈12〉 is isomorphic to Z12. Formally, this is just the FHT
applied to the following homomorphism:

φ : Z −→ Z12 , φ : k 7−→ k (mod 12) ,

Clearly, Ker(φ) = {. . . ,−24,−12, 0, 12, 24, . . . } = 〈12〉. By the FHT:

Z/Ker(φ) = Z/〈12〉 ∼= Im(φ) = Z12 .
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A picture of the isomorphism i : Z12 −→ Z/〈12〉 (from the VGT website)
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Finite abelian groups

We’ve seen that some cyclic groups can be expressed as a direct product, and others
cannot.

Below are two ways to lay out the Cayley diagram of Z6 so the direct product
structure is obvious: Z6

∼= Z3 × Z2.

3

51

0

4 2 3

0

5

2

1

4

However, the group Z8 cannot be written as a direct product. No matter how we
draw the Cayley graph, there must be an arrow of order 8. (Why?)

We will answer the question of when Zn × Zm
∼= Znm, and in doing so, completely

classify all finite abelian groups.
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Finite abelian groups

Proposition

Znm
∼= Zn × Zm if and only if gcd(n,m) = 1.

Proof (sketch)

“⇐”: Suppose gcd(n,m) = 1. We claim that (1, 1) ∈ Zn × Zm has order nm.

|(1, 1)| is the smallest k such that “(k, k) = (0, 0).” This happens iff n | k and m | k.
Thus, k = lcm(n,m) = nm. X

(0,0) (1,0) (2,0) (3,0)

(0,1) (1,1) (2,1) (3,1)

(0,2) (1,2) (2,2) (3,2)

· · ·

(0,0)
(1,1)

(2,2)

(3,0)

(0,1)

(1,2)
(2,0)

(3,1)

(0,2)

(1,0)

(2,1)

(3,2)

Z4 × Z3
∼= Z12
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Finite abelian groups

Proposition

Znm
∼= Zn × Zm if an only if gcd(n,m) = 1.

Proof (cont.)

“⇒”: Suppose Znm
∼= Zn × Zm. Then Zn × Zm has an element (a, b) of order nm.

For convenience, we will switch to
“multiplicative notation”, and denote our
cyclic groups by Cn.

Clearly, 〈a〉 = Cn and 〈b〉 = Cm. Let’s look at
a Cayley diagram for Cn × Cm.

The order of (a, b) must be a multiple of n
(the number of rows), and of m (the number
of columns).

By definition, this is the least common
multiple of n and m.

(e,e) (e,b) . . . (e,bm-1)

(a,e) (a,b) . . . (a,bm-1)

...
...

. . .
...

(an-1,e) (an-1,b) . . . an-1,bm-1

But |(a, b)| = nm, and so lcm(n,m) = nm. Therefore, gcd(n,m) = 1. �
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The Fundamental Theorem of Finite Abelian Groups

Classification theorem (by “prime powers”)

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e.,
for some integers n1, n2, . . . , nm,

A ∼= Zn1 × Zn2 × · · · × Znm ,

where each ni is a prime power, i.e., ni = pdi
i , where pi is prime and di ∈ N.

The proof of this is more advanced, and while it is at the undergraduate level, we
don’t yet have the tools to do it.

However, we will be more interested in understanding and utilizing this result.

Example

Up to isomorphism, there are 6 abelian groups of order 200 = 23 · 52:

Z8 × Z25 Z8 × Z5 × Z5

Z2 × Z4 × Z25 Z2 × Z4 × Z5 × Z5

Z2 × Z2 × Z2 × Z25 Z2 × Z2 × Z2 × Z5 × Z5
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The Fundamental Theorem of Finite Abelian Groups
Finite abelian groups can be classified by their “elementary divisors.” The mysterious
terminology comes from the theory of modules (a graduate-level topic).

Classification theorem (by “elementary divisors”)

Every finite abelian group A is isomorphic to a direct product of cyclic groups, i.e.,
for some integers k1, k2, . . . , km,

A ∼= Zk1 × Zk2 × · · · × Zkm .

where each ki is a multiple of ki+1.

Example

Up to isomorphism, there are 6 abelian groups of order 200 = 23 · 52:

by “prime-powers” by “elementary divisors”
Z8 × Z25 Z200

Z4 × Z2 × Z25 Z100 × Z2

Z2 × Z2 × Z2 × Z25 Z50 × Z2 × Z2

Z8 × Z5 × Z5 Z40 × Z5

Z4 × Z2 × Z5 × Z5 Z20 × Z10

Z2 × Z2 × Z2 × Z5 × Z5 Z10 × Z10 × Z2
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The Fundamental Theorem of Finitely Generated Abelian Groups

Just for fun, here is the classification theorem for all finitely generated abelian
groups. Note that it is not much different.

Theorem

Every finitely generated abelian group A is isomorphic to a direct product of cyclic
groups, i.e., for some integers n1, n2, . . . , nm,

A ∼= Z× · · · × Z︸ ︷︷ ︸
k copies

×Zn1 × Zn2 × · · · × Znm ,

where each ni is a prime power, i.e., ni = pdi
i , where pi is prime and di ∈ N.

In other words, A is isomorphic to a (multiplicative) group with presentation:

A = 〈a1, . . . , ak , r1, . . . , rm | rnii = 1, aiaj = ajai , ri rj = rj ri , ai rj = rjai 〉 .

In summary, (finitely generated) abelian groups are relatively easy to understand.

In contrast, nonabelian groups are more mysterious and complicated. Soon, we will
study the Sylow Theorems which will help us better understand the structure of finite
nonabelian groups.
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The Isomorphism Theorems

The Fundamental Homomorphism Theorem (FHT) is the first of four basic theorems
about homomorphism and their structure.

These are commonly called “The Isomorphism Theorems”:

First Isomorphism Theorem: “Fundamental Homomorphism Theorem”

Second Isomorphism Theorem: “Diamond Isomorphism Theorem”

Third Isomorphism Theorem: “Freshman Theorem”

Fourth Isomorphism Theorem: “Correspondence Theorem”

All of these theorems have analogues in other algebraic structures: rings, vector
spaces, modules, and Lie algebras, to name a few.

In this lecture, we will summarize the last three isomorphism theorems and provide
visual pictures for each.

We will prove one, outline the proof of another (homework!), and encourage you to
try the (very straightforward) proofs of the multiple parts of the last one.

Finally, we will introduce the concepts of a commutator and commutator subgroup,
whose quotient yields the abelianization of a group.
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The Second Isomorphism Theorem

Diamond isomorphism theorem

Let H ≤ G , and N E G . Then

(i) The product HN = {hn | h ∈ H, n ∈ N} is a subgroup of G .

(ii) The intersection H ∩ N is a normal subgroup of G .

(iii) The following quotient groups are isomorphic:

HN/N ∼= H/(H ∩ N)

G

HN

H N

H ∩ N

Proof (sketch)

Define the following map

φ : H −→ HN/N , φ : h 7−→ hN .

If we can show:

1. φ is a homomorphism,

2. φ is surjective (onto),

3. Ker φ = H ∩ N,

then the result will follow immediately from the FHT. The details are left as HW.
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The Third Isomorphism Theorem

Freshman theorem

Consider a chain N ≤ H ≤ G of normal subgroups of G . Then

1. The quotient H/N is a normal subgroup of G/N;

2. The following quotients are isomorphic:

(G/N)/(H/N) ∼= G/H .

G G/N
(G/N)

(H/N)
∼= G

H
H N H/N

(Thanks to Zach Teitler of Boise State for the concept and graphic!)
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The Third Isomorphism Theorem

Freshman theorem

Consider a chain N ≤ H ≤ G of normal subgroups of G . Then H/N E G/N and
(G/N)/(H/N) ∼= G/H.

Proof

It is easy to show that H/N E G/N (exercise). Define the map

ϕ : G/N −→ G/H, ϕ : gN 7−→ gH.

• Show ϕ is well-defined : Suppose g1N = g2N. Then g1 = g2n for some n ∈ N. But
n ∈ H because N ≤ H. Thus, g1H = g2H, i.e., ϕ(g1N) = ϕ(g2N). X

• ϕ is clearly onto and a homomorphism. X

• Apply the FHT:

Kerϕ = {gN ∈ G/N | ϕ(gN) = H}
= {gN ∈ G/N | gH = H}
= {gN ∈ G/N | g ∈ H} = H/N

By the FHT, (G/N)/Kerϕ = (G/N)/(H/N) ∼= Imϕ = G/H. �
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The Fourth Isomorphism Theorem

The full statement is a bit technical, so here we just state it informally.

Correspondence theorem

Let N E G . There is a 1–1 correspondence between subgroups of G/N and
subgroups of G that contain N. In particular, every subgroup of G/N has the form
A := A/N for some A satisfying N ≤ A ≤ G .

This means that the corresponding subgroup lattices are identical in structure.

Example

〈1〉

〈−1〉

〈j〉〈i〉 〈k〉

Q8

〈−1〉/〈−1〉

〈j〉/〈−1〉〈i〉/〈−1〉 〈k〉/〈−1〉

Q8/〈−1〉

〈e〉

〈vh〉〈h〉 〈v〉

V4

The quotient Q8/〈−1〉 is isomorphic to V4. The subgroup lattices can be visualized
by “collapsing” 〈−1〉 to the identity.
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Correspondence theorem (formally)

Let N EG . Then there is a bijection from the subgroups of G/N and subgroups of G
that contain N. In particular, every subgroup of G/N has the form A := A/N for
some A satisfying N ≤ A ≤ G . Moreover, if A,B ≤ G , then

1. A ≤ B if and only if A ≤ B,

2. If A ≤ B, then [B : A] = [B : A],

3. 〈A,B〉 = 〈A,B〉,
4. A ∩ B = A ∩ B,

5. AE G if and only if AE G .

Example

〈e〉

〈r2〉〈r2f 〉〈f 〉 〈rf 〉 〈r3f 〉

〈r2, f 〉 〈r〉 〈r2, rf 〉

D4

〈r2〉/〈r2〉

〈r〉/〈r2〉〈r2, f 〉/〈r2〉 〈r2, rf 〉/〈r2〉

D4/〈r2〉

〈e〉

〈vh〉〈h〉 〈v〉

V4

M. Macauley (Clemson) Section 4: Maps between groups Math 4120, Modern Algebra 41 / 51

mailto:macaule@clemson.edu


Application: commutator subgroups and abelianizations

We’ve seen how to divide Z by 〈12〉, thereby “forcing” all multiples of 12 to be zero.
This is one way to construct the integers modulo 12: Z12

∼= Z/〈12〉.

Now, suppose G is nonabelian. We would like to divide G by its “non-abelian parts,”
making them zero and leaving only “abelian parts” in the resulting quotient.

A commutator is an element of the form aba−1b−1. Since G is nonabelian, there are
non-identity commutators: aba−1b−1 6= e in G .

ab = ba ∗ ab 6= ba ∗

In this case, the set C := {aba−1b−1 | a, b ∈ G} contains more than the identity.

Define the commutator subgroup G ′ of G to be

G ′ := 〈aba−1b−1 | a, b ∈ G〉 .

This is a normal subgroup of G (homework exercise). If we quotient out by it, we get
an abelian group! (Because we have killed every instance of the “ab 6= ba pattern”
shown above.)
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Commutator subgroups and abelianizations

Definition

The abelianization of G is the quotient group G/G ′. This is the group that one gets
by “killing off” all nonabelian parts of G .

In some sense, the commutator subgroup G ′ is the smallest normal subgroup N of G
such that G/N is abelian. [Note that G would be the “largest” such subgroup.]

Equivalently, the quotient G/G ′ is the largest abelian quotient of G . [Note that
G/G ∼= 〈e〉 would be the “smallest” such quotient.]

Universal property of commutator subgroups

Suppose f : G → A is a homomorphism to an abelian group A. Then there is a
unique homomorphism h : G/G ′ → A such that f = hq:

G
f //

q   

A

G/G ′
h

??

We say that f “factors through” the abelianization, G/G ′.
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Commutator subgroups and abelianizations

Examples

Consider the groups A4 and D4. It is easy to check that

G ′A4
= 〈xyx−1y−1 | x , y ∈ A4〉 ∼= V4 , G ′D4

= 〈xyx−1y−1 | x , y ∈ D4〉 = 〈r 2〉 .

{1}

〈(12)(34))〉 〈(13)(24)〉 〈(14)(23))〉

〈(234)〉〈(134)〉〈(124)〉〈(123)〉

〈(12)(34), (13)(24)〉

A4

〈e〉

〈r2〉〈r2f 〉〈f 〉 〈rf 〉 〈r3f 〉

〈r2, f 〉 〈r〉 〈r2, rf 〉

D4

By the Correspondence Theorem, the abelianization of A4 is A4/V4
∼= C3, and the

abelianization of D4 is D4/〈r 2〉 ∼= V4.

Notice that G/G ′ is abelian, and moreover, taking the quotient of G by anything
above G ′ will yield an abelian group.
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Automorphisms

Definition

An automorphism is an isomorphism from a group to itself.

The set of all automorphisms of G forms a group, called the automorphism group of
G , and denoted Aut(G).

Remarks.

An automorphism is determined by where it sends the generators.

An automorphism φ must send generators to generators. In particular, if G is
cyclic, then it determines a permutation of the set of (all possible) generators.

Examples

1. There are two automorphisms of Z: the identity, and the mapping n 7→ −n.
Thus, Aut(Z) ∼= C2.

2. There is an automorphism φ : Z5 → Z5 for each choice of φ(1) ∈ {1, 2, 3, 4}.
Thus, Aut(Z5) ∼= C4 or V4. (Which one?)

3. An automorphism φ of V4 = 〈h, v〉 is determined by the image of h and v .
There are 3 choices for φ(h), and then 2 choices for φ(v). Thus, |Aut(V4)| = 6,
so it is either C6

∼= C2 × C3, or S3. (Which one?)
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Automorphism groups of Zn

Definition

The multiplicative group of integers modulo n, denoted Z∗n or U(n), is the group

U(n) := {k ∈ Zn | gcd(n, k) = 1}

where the binary operation is multiplication, modulo n.

1

2

3

4

1 2 3 4

1

2

3

4

2

4

1

3

3

1

4

2

4

3

2

1

U(5) = {1, 2, 3, 4} ∼= C4

1

5

1 5

1

5

5

1

U(6) = {1, 5} ∼= C2

1

3

5

7

1 3 5 7

1

3

5

7

3

1

7

5

5

7

1

3

7

5

3

1

U(8) = {1, 3, 5, 7} ∼= C2 × C2

Proposition (homework)

The automorphism group of Zn is Aut(Zn) = {σa | a ∈ U(n)} ∼= U(n), where

σa : Zn −→ Zn , σa(1) = a .
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Automorphisms of D3

Let’s find all automorphisms of D3 = 〈r , f 〉. We’ll see a very similar example to this
when we study Galois theory.

Clearly, every automorphism φ is completely determined by φ(r) and φ(f ).

Since automorphisms preserve order, if φ ∈ Aut(D3), then

φ(e) = e , φ(r) = r or r 2︸ ︷︷ ︸
2 choices

, φ(f ) = f , rf , or r 2f︸ ︷︷ ︸
3 choices

.

Thus, there are at most 2 · 3 = 6 automorphisms of D3.

Let’s try to define two maps, (i) α : D3 → D3 fixing r , and (ii) β : D3 → D3 fixing f :{
α(r) = r
α(f ) = rf

{
β(r) = r 2

β(f ) = f

I claim that:

these both define automorphisms (check this!)

these generate six different automorphisms, and thus 〈α, β〉 = Aut(D3).

To determine what group this is isomorphic to, find these six automorphisms, and
make a group presentation and/or multiplication table. Is it abelian?
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Automorphisms of D3

An automorphism can be thought of as a re-wiring of the Cayley diagram.

r
id7−→ r

f 7−→ f

f

rfr2f

e

r2 r

e

r2f

r2

rf

r

f

r
α7−→ r

f 7−→ rf

f

rfr2f

e

r2 r

e

r2f

r2

rf

r

f

r
α2

7−→ r
f 7−→ r 2f

f

rfr2f

e

r2 r

e

r2f

r2

rf

r

f

f

rfr2f

e

r2 r

e

r2f

r2

rf

r

f
r

β7−→ r 2

f 7−→ f

f

rfr2f

e

r2 r

e

r2f

r2

rf

r

f
r
αβ7−→ r 2

f 7−→ r 2f

f

rfr2f

e

r2 r

e

r2f

r2

rf

r

f
r
α2β7−→ r 2

f 7−→ rf
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Automorphisms of D3

Here is the multiplication table and Cayley diagram of Aut(D3) = 〈α, β〉.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

It is purely coincidence that Aut(D3) ∼= D3. For example, we’ve already seen that

Aut(Z5) ∼= U(5) ∼= C4 , Aut(Z6) ∼= U(6) ∼= C2 , Aut(Z8) ∼= U(8) ∼= C2 × C2 .
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Automorphisms of V4 = 〈h, v〉
The following permutations are both automorphisms:

α : h v hv and β : h v hv

h
id7−→ h

v 7−→ v

hv 7−→ hv

e

v

h

hv

h
α7−→ v

v 7−→ hv

hv 7−→ h

e

v

h

hv

h
α2

7−→ hv

v 7−→ h

hv 7−→ v

e

v

h

hv

h
β7−→ v

v 7−→ h

hv 7−→ hv

e

v

h

hv

h
αβ7−→ h

v 7−→ hv

hv 7−→ v

e

v

h

hv

h
α2β7−→ hv

v 7−→ v

hv 7−→ h

e

v

h

hv
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Automorphisms of V4 = 〈h, v〉

Here is the multiplication table and Cayley diagram of Aut(V4) = 〈α, β〉 ∼= S3
∼= D3.

id

α

α2

β

αβ

α2β

id α α2 β αβ α2β

id

α

α2

β

αβ

α2β

α

α2

id

α2β

β

αβ

α2

id

α

αβ

α2β

β

β

αβ

α2β

id

α

α2

αβ

α2β

β

α2

id

α

α2β

β

αβ

α

α2

id

id

Recall that α and β can be thought of as the permutations h v hv and h v hv

and so Aut(G) ↪→ Perm(G) ∼= Sn always holds.
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