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Homomorphisms

Throughout this course, we’ve said that two groups are isomorphic if for some generating
sets, they have Cayley graphs with the same structure.

This can be formalized by a “structure-preserving” function φ : G ! H between groups,
called a homomorphism.

An isomorphism is simply a bijective homomorphism.

What we called a re-wiring when constructing semidirect products is an automorphism: an
isomorphism φ : G ! G .

The Greek roots “homo” and “morph” together mean “same shape.”

The homomorphism φ : G ! H is an

embedding if φ is one-to-one: “G is a subgroup of H.”

quotient map if φ is onto: “H is a quotient of G.”

We’ll see that even if φ is neither, it can be decomposed as a composition φ = ι ◦ π of
quotient followed by an embedding.

M. Macauley (Clemson) Lecture 4.1: Homomorphisms Visual Algebra 2 / 11

mailto:macaule@clemson.edu


Preview: embeddings vs. quotients

The difference between embeddings and quotient maps can be seen in the subgroup lattice:
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In one of these groups, D5 is subgroup. In the other, it arises as a quotient.

This, and much more, will be consequences of the celebrated isomorphism theorems.
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Preview: subgroups, quotients, and subquotients

Often, we’ll see familiar subgroup lattices in the middle of a larger lattice.

These are called subquotients.
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quotient of a subgroup
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The isomorphism theorems relates the structure of a group to that of its quotients and
subquotients.
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A example embedding
When we say Z3 ≤ D3, we really mean that the structure of Z3 appears in D3.

This can be formalized by a map φ : Z3 ! D3, defined by φ : n 7! rn.
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In general, a homomorphism is a function φ : G ! H with some extra properties.

We will use standard function terminology:

the group G is the domain

the group H is the codomain

the image is what is often called the range:

Im(φ) = φ(G) =
{
φ(g) | g ∈ G

}
.
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The formal definition

Definition
A homomorphism is a function φ : G ! H between two groups satisfying

φ(ab) = φ(a)φ(b), for all a, b ∈ G .

Note that the operation a · b is in the domain while φ(a) · φ(b) in the codomain.

In this example, the homomorphism condition is φ(a + b) = φ(a) · φ(b). (Why?)
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rf

φ : Z3 −! D3

k 7−! rk

Not only is there a bijective correspondence between the elements in Z3 and those in the
subgroup 〈r〉 of D3, but the relationship between the corresponding nodes is the same.
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Homomorphisms

Remark
Not every function between groups is a homomorphism! The condition φ(ab) = φ(a)φ(b)
means that the map φ preserves the structure of G .

The φ(ab) = φ(a)φ(b) condition has visual interpretations on the level of Cayley graphs
and Cayley tables.

Cayley
tables

Cayley
graphs

ab = c

Domain
a

c

b

a

b

c

Codomain
φ(a)

φ(c)

φ(b)
φ

φ

φ(a)φ(b)=φ(c)

φ(a)

φ(b)

φ(c)

Note that in the Cayley graphs, b and φ(b) are paths; they need not just be edges.
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An example

Consider the function φ that reduces an integer modulo 5:

φ : Z −! Z5 , φ(n) = n (mod 5).

Since the group operation is additive, the “homomorphism property” becomes

φ(a + b) = φ(a) + φ(b) .

In plain English, this just says that one can “first add and then reduce modulo 5,” OR “first
reduce modulo 5 and then add.”

Cayley
tables

Cayley
graphs

Domain: Z
19

27

8

19

8

27

Codomain: Z5
4

2

3
φ

φ 4

3

2
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Homomorphisms and generators

Remark
If we know where a homomorphism maps the generators of G , we can determine where it
maps all elements of G .

For example, if φ : Z3 ! Z6 is a homomorphism with φ(1) = 4, we can deduce:

φ(2) = φ(1+ 1) = φ(1) + φ(1) = 4+ 4 = 2

φ(0) = φ(1+ 2) = φ(1) + φ(2) = 4+ 2 = 0.

Example
Suppose that G = 〈a, b〉, and φ : G ! H, and we know φ(a) and φ(b). We can find the
image of any g ∈ G . For example, for g = a3b2ab,

φ(g) = φ(aaabbab) = φ(a)φ(a)φ(a)φ(b)φ(b)φ(a)φ(b).

Note that if k ∈ N, then φ(ak ) = φ(a)k . What do you think φ(a−1) is?
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Two basic properties of homomorphisms

Proposition
For any homomorphism φ : G ! H:

(i) φ(1G ) = 1H “φ sends the identity to the identity”

(ii) φ(g−1) = φ(g)−1 “φ sends inverses to inverses”

Proof
(i) Pick any g ∈ G . Now, φ(g) ∈ H; observe that

φ(1G )φ(g) = φ(1G · g) = φ(g) = 1H · φ(g) .

Therefore, φ(1G ) = 1H . X

(ii) Take any g ∈ G . Observe that

φ(g)φ(g−1) = φ(gg−1) = φ(1G ) = 1H .

Since φ(g)φ(g−1) = 1H , it follows immediately that φ(g−1) = φ(g)−1. X

Corollary
If φ is a homomorphism, then φ(gn) = φ(g)n for all n ∈ Z.

M. Macauley (Clemson) Lecture 4.1: Homomorphisms Visual Algebra 10 / 11

mailto:macaule@clemson.edu


A word of caution

Just because a homomorphism φ : G ! H is determined by the image of its generators
does not mean that every such image will work.

For example, let’s try to define a homomorphism φ : Z3 ! Z4 by φ(1) = 1. Then we get

φ(2) = φ(1+ 1) = φ(1) + φ(1) = 2,

φ(0) = φ(1+ 1+ 1) = φ(1) + φ(1) + φ(1) = 3 6= 0.

This is impossible, because φ(0) must be 0 ∈ Z4.

That’s not to say that there isn’t a homomorphism φ : Z3 ! Z4; note that there is always
the trivial homomorphism between two groups:

φ : G −! H , φ(g) = 1H for all g ∈ G .

Exercise
Show that there is no embedding φ : Zn ↪! Z, for n ≥ 2. That is, any such homomorphism
must satisfy φ(1) = 0.
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