Visual Algebra

Lecture 4.2: Embeddings and quotients

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences
Clemson University
South Carolina, USA
http://www.math.clemson.edu/~macaule/

Types of homomorphisms

Consider the following homomorphism $\theta \colon \mathbb{Z}_3 \to C_6$, defined by $\theta(n) = r^{2n}$:

Note that $\theta(a+b)=\theta(a)\theta(b)$. The red arrow in \mathbb{Z}_3 gets mapped to the 2-step path in C_6 .

A homomorphism $\phi\colon G\to H$ that is one-to-one or "injective" is an embedding: the group G "embeds" into H as a subgroup. Optional: write $\phi\colon G\hookrightarrow H$.

If $\phi(G) = H$, then ϕ is onto, or surjective. We call it a quotient. Optional: $\phi: G \to H$.

Definition

A homomorphism that is both injective and surjective is an isomorphism.

An automorphism is an isomorphism from a group to itself.

An example that is neither an embedding nor quotient

Consider the homomorphism $\phi\colon Q_8\to A_4$ defined by

$$\phi(i) = (12)(34), \qquad \phi(j) = (13)(24).$$

Using the property of homomorphisms,

$$\phi(k) = \phi(ij) = \phi(i)\phi(j) = (12)(34) \cdot (13)(24) = (14)(23),$$

$$\phi(-1) = \phi(i^2) = \phi(i)^2 = ((12)(34))^2 = e,$$

and $\phi(-g) = \phi(g)$ for g = i, j, k.

An example of an isomorphism

We have already seen that D_3 is isomorphic to S_3 .

This means that there's a bijective correspondence $f: D_3 \rightarrow S_3$.

But not just any bijection will do. Intuitively,

- (123) and (132) should be the rotations
- (12), (13), and (23) should be the reflections
- The identity permutation must be the identity symmetry.

It is easy to verify that the following is an isomorphism:

$$\phi: D_3 \longrightarrow S_3, \qquad \phi(r) = (123), \quad \phi(f) = (23).$$

However, there are other isomorphisms between these groups.

Group representations

We've already seen how to represent groups as collections of matrices.

Formally, a (faithful) representation of a group G is a (one-to-one) homomorphism

$$\phi \colon G \longrightarrow \operatorname{GL}_n(K)$$

for some field K (e.g., \mathbb{R} , \mathbb{C} , \mathbb{Z}_p , etc.)

For example, the following 8 matrices form group under multiplication, isomorphic to Q_8 .

$$\left\{\pm I, \quad \pm \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \pm \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \pm \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}\right\}.$$

Formally, we have an embedding $\phi: Q_8 \hookrightarrow GL_4(\mathbb{R})$ where

$$\phi(i) = \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad \phi(j) = \begin{bmatrix} 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{bmatrix}, \quad \phi(k) = \begin{bmatrix} 0 & 0 & 0 & -1 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{bmatrix}.$$

Notice how we can use the homomorphism property to find the image of the other elements.

Kernels and quotient maps

If $\phi \colon G \to H$ is onto, it is a quotient map.

We'll see how these arise from our quotient process.

Definition

The kernel of a homomorphism $\phi: G \to H$ is the set

$$Ker(\phi) := \phi^{-1}(1_H) = \{k \in G \mid \phi(k) = 1_H\}.$$

The kernel is the "group theoretic" analogue of the nullspace of a matrix.

Another way to define the kernel is as the preimage of the identity.

Definition

If $\phi \colon G \to H$ is a homomorphism and $h \in \operatorname{Im}(\phi)$, define the preimage of h to be the set

$$\phi^{-1}(h) := \{g \in G \mid \phi(g) = h\}.$$

Note that ϕ^{-1} is generally *not* a function!

Let's do some examples, and observe what the kernels and preimages are.

An example of a quotient

Recall that $C_2 = \{e^{0\pi i}, e^{1\pi i}\} = \{1, -1\}$. Consider the following quotient map:

$$\phi: D_4 \longrightarrow C_2$$
, defined by $\phi(r) = 1$ and $\phi(f) = -1$.

Note that

$$\phi(r^k) = \phi(r)^k = 1^k = 1, \qquad \phi(r^k f) = \phi(r^k)\phi(f) = \phi(r)^k\phi(f) = 1^k(-1) = -1.$$

	1	r	r^2	r ³	f	rf	r^2f	r ³ f
1	1	r	r ²	r ³	f	rf	r ² f	r³f
r	r	r ²	r ³	1	rf	r ² f	r ³ f	f
			1					
r ³	r ³	1	r	r ²	r ³ f	f	rf	r^2f
f	f	r ³ f	r^2f	rf	1	r ³	r ²	r
rf	rf	f	r^3f	r ² f	r	1	r ³	r ²
r ² f	r ² f	rf	f	r ³ f	r ²	r	1	r ³
r ³ f	r ³ f	r ² f	rf	f	r ³	r ²	r	1

	1	r	r ²	r ³	f	rf	r^2f	r^3f
1	1	r	r ²	_r 3	f	rf	r ² f	r ³ f
r	r	r ²	r ³	1	rf		r ³ f	f
r ²	r ²	r ³	1	r	r^2f	r ³ f	1	
r ³	r ³			r ²	r ³ f			
f	f	r ³ f	r ² f	rf	1	r ³	r ²	r
rf	rf		r ³ f	r ² f	r	1	r ³	r ²
r ² f	r ² f	rf	f	r ³ f	r ²	r	1	r ³
r ³ f	r^3f			f	r ³	r ²		

$$Ker(\phi) = \phi^{-1}(1) = \langle r \rangle$$
 ("rotations"),

$$\phi^{-1}(-1) = f\langle r \rangle$$
 ("reflections").

An example of a quotient

Define the homomorphism

$$\phi: Q_8 \longrightarrow V_4, \qquad \phi(i) = v, \quad \phi(j) = h.$$

Since $Q_8 = \langle i, j \rangle$, we can determine where ϕ sends the remaining elements:

$$\phi(1) = e$$

$$\phi(-1) = \phi(i^2) = \phi(i)^2 = v^2 = e$$

$$\phi(k) = \phi(ij) = \phi(i)\phi(j) = vh = r$$

$$\phi(-k) = \phi(ji) = \phi(j)\phi(i) = hv = r$$

$$\phi(-i) = \phi(-1)\phi(i) = ev = v$$

$$\phi(-j) = \phi(-1)\phi(j) = eh = h$$

Note that the kernel is the normal subgroup $N:=\mathrm{Ker}(\phi)=\phi^{-1}(e)=\langle -1\rangle$, and all preimages are cosets:

$$\phi^{-1}(v) = iN, \qquad \phi^{-1}(h) = jN, \qquad \phi^{-1}(r) = kN.$$

Properties of the kernel

Proposition

The kernel of any homomorphism $\phi: G \to H$, is a normal subgroup.

Proof

Let $N := \text{Ker}(\phi)$. First, we'll show that it's a subgroup. Take any $a, b \in N$.

Identity: $\phi(e) = e$.

✓ |

Closure: $\phi(ab) = \phi(a) \phi(b) = e \cdot e = e$.

١ ' ا

Inverse: $\phi(a^{-1}) = \phi(a)^{-1} = e^{-1} = e$.

Now we'll show it's normal. Take any $n \in N$. We'll show that $gng^{-1} \in N$ for all $g \in G$.

By the homomorphism property,

$$\phi(gng^{-1}) = \phi(g) \phi(n) \phi(g^{-1}) = \phi(g) \cdot e \cdot \phi(g)^{-1} = e.$$

Therefore, $gng^{-1} \in Ker(\phi)$.

Key observation

Given any homomorphism $\phi \colon G \to H$, we can *always* form the quotient group $G/\operatorname{Ker}(\phi)$.

Properties of the kernel

Proposition

Let $\phi \colon G \to H$ be a homomorphism. Then each preimage $\phi^{-1}(h)$ is a coset of $Ker(\phi)$.

Proof

Let $N = \operatorname{Ker}(\phi)$ and take any $g \in \phi^{-1}(h)$. (This means $\phi(g) = h$.)

We claim that $\phi^{-1}(h) = gN$. We need to verify both \subseteq and \supseteq .

"⊆": Take $a \in \phi^{-1}(h)$, i.e., $\phi(a) = h$. We need to show that $a \in gN$.

From basic properties of cosets, we have the equivalences

$$a \in gN \iff aN = gN \iff g^{-1}aN = N \iff g^{-1}a \in N.$$

This last condition is true because

$$\phi(g^{-1}a) = \phi(g)^{-1}\phi(a) = h^{-1} \cdot h = 1_H.$$

"\[\]": Pick any $gn \in gN$. This is in $\phi^{-1}(h)$ because

$$\phi(qn) = \phi(q)\phi(n) = h \cdot 1_H = h.$$