Visual Algebra

Lecture 6.9: Central series and extensions

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Chapter overview

Chemistry investigates how matter is assembled from basic "building blocks" (atoms).

Main goal

Understand how groups are assembled from basic "building blocks" (simple groups).

This chapter is broken into three parts; this lecture is on Part 3(e):

- 1. Finite abelian groups are products of cyclic groups.
- 2. The classification of finite simple groups: the "periodic table of groups."
- 3. Extensions of groups: like doing "all of chemistry for groups."
 - (a) Groups built from a (right) split extension (semidirect products)
 - (b) Groups built from a left split extension (direct products)
 - (c) Groups built from simple extensions (all groups)
 - (d) Groups built from abelian extensions (solvable groups)
 - (e) Groups built from central extensions (nilpotent groups)

Central series

Definition

A central series of a group G is a normal series

 $G = C_0 \supseteq C_1 \supseteq \cdots \supseteq C_m = \langle 1 \rangle$, such that $C_{k-1}/C_k \leq Z(G/C_k)$.

Equivalently, G/C_k is a central extension of G/C_{k-1} by C_{k-1}/C_k .

$$1 \longrightarrow C_{k-1}/C_k \xrightarrow{\iota_k} G/C_k \xrightarrow{\pi_k} G/C_{k-1} \longrightarrow 1$$

Nilpotency and central extensions

Key idea

Climb up a central series to construct a nilpotent group with central extensions.

We can say:

- Q_{16} is a central extension of $D_4 \cong Q_{16}/Z_1$ by $Z(Q_{16}) \cong C_2, \ldots$
- ... and D_4 is a central extension of $V_4 \cong Q_{16}/Z_2$ by $Z(D_4) \cong C_2, \ldots$
- ... and V_4 is a central extension of $C_1 \cong Q_{16}/Z_3$ by $Z(V_4) \cong V_4$.

Nilpotency and central extensions

"Q₁₆ is constructible with 2 central extensions"

Definition

Say that *G* is constructible with

 \blacksquare ... 1 central extension if for some abelian A_1 and Q_0 ,

$$1 \longrightarrow A_1 \longleftrightarrow G \longrightarrow Q_0 \longrightarrow 1$$

 \blacksquare ... k central extensions if

$$1 \longrightarrow A_k \longleftrightarrow G \longrightarrow Q_{k-1} \longrightarrow 1$$

where $\iota(A_k)$ is central, and Q_{k-1} is constructible with k-1 central extensions.

Nilpotency and central extensions

If G is constructible with k central extensions, then we have the following:

$$1 \longrightarrow G/G \longrightarrow G/C_0 \longrightarrow 1 \longrightarrow 1$$

$$1 \longrightarrow C_0/C_1 \longrightarrow G/C_1 \longrightarrow G/C_0 \longrightarrow 1$$

$$1 \longrightarrow C_1/C_2 \longrightarrow G/C_2 \longrightarrow G/C_1 \longrightarrow 1$$

$$1 \longrightarrow C_{k-2}/C_{k-1} \hookrightarrow G/C_{k-1} \longrightarrow G/C_{k-2} \longrightarrow 1$$

$$1 \longrightarrow C_{k-1}/C_k \longrightarrow G/C_k \longrightarrow G/C_{k-1} \longrightarrow 1$$

Note that G has a normal central series

 $G = C_0 \supseteq \cdots \supseteq C_k = \langle 1 \rangle$, each C_{i-1}/C_i is central in G/C_i , and $C_i \trianglelefteq G$.

Conversely, given a normal central series, we can reconstruct the exact sequences.

Central series

Remark

The ascending central series of a nilpotent group G is a normal series

$$\langle 1 \rangle = Z_0 \trianglelefteq Z_1 \trianglelefteq \cdots \trianglelefteq Z_m = G$$
, such that $Z_{k+1}/Z_k = Z(G/Z_k)$.

Equivalently, G/Z_k is the maximal central extension of G/Z_{k+1} (by Z_{k+1}/Z_k).

$$1 \longrightarrow Z_{k+1}/Z_k \xrightarrow{\iota_k} G/Z_k \xrightarrow{\pi_k} G/Z_{k+1} \longrightarrow 1$$

Central series

Remark

The descending central series of a group G is a normal series

 $G = L_0 \supseteq L_1 \supseteq \cdots \supseteq L_m = G$, such that $L_k/L_{k+1} \leq Z(G/L_{k+1})$.

Equivalently, G/L_{k+1} is a central extension of G/C_k by L_k/L_{k+1} .

$$1 \longrightarrow L_k/L_{k+1} \stackrel{\iota_k}{\longrightarrow} G/L_{k+1} \stackrel{\pi_k}{\longrightarrow} G/L_k \longrightarrow 1$$

The ascending central series of $G = C_8.C_4$ (GAP ID 32.15)

The descending central series of $G = C_8$. C_4 (GAP ID 32.15)

 $1 \longrightarrow C_2 \hookrightarrow C_4 \rtimes C_4 \xrightarrow{} C_4 \rtimes C_4 \longrightarrow 1 \qquad "C_4 \rtimes C_4 \text{ is constructible with 1 central extension"}$

 $1 \longrightarrow C_2 \hookrightarrow C_8.C_4 \longrightarrow C_4 \times C_2 \longrightarrow 1$

" C_8 . C_4 is constructible with 2 central extensions"

Monotonicity of central ascents and descents

Proposition

Let $N \leq H \leq G$ be a chain of normal subgroups. Then

- 1. If $Z(G/N) = Z_1/N$ and $Z(G/H) = Z_2/H$, then $Z_1 \le Z_2$.
- 2. $[G, N] \leq [G, H]$.

Proof of (i)

For any $z \in Z_1$, the coset zN is central in G/N, which means that, for all $g \in G$,

$$\begin{split} zNgN &= gNzN \iff [z,g] \leq N & by \ the \ central \ ascent \ lemma \\ \implies [z,g] \leq H & by \ assumption, \ N \leq H \\ \iff zHgH = gHzH & by \ the \ central \ ascent \ lemma \\ \iff zH \in Z(G/H) & by \ definition \ of \ Z(G/H) \\ \iff z \in Z_2 & by \ definition; \ Z(G/H) = Z_2/H. \end{split}$$

The crooked ladder theorem

Let G be a finite group, and suppose that either of the following hold:

- 1. The descending central series reaches the bottom: $L_{n-1} \ge L_n = \langle 1 \rangle$.
- 2. The ascending central series reaches the top: $Z_{n-1} \leq Z_n = G$.

Then for all $k = 0, \ldots, n$,

$$L_{n-k} \leq Z_k$$
.

The crooked ladder theorem

Let G be a finite group, and suppose that either of the following hold:

(i) The descending central series reaches the bottom: $L_{n-1} \ge L_n = \langle 1 \rangle$.

(ii) The ascending central series reaches the top: $Z_{n-1} \leq Z_n = G$.

Then for all $k = 0, \ldots, n$,

$$L_{n-k} \leq Z_k$$
.

The ascending and descending central series have the same length

Corollary

The ascending central series reaches $Z_n = G$ iff the descending central series reaches $L_m = \langle 1 \rangle$. If this happens, their lengths are the same.

Proof

Ascending vs. descending central series

Here's a familiar example, higlighting the "crooked ladder property,"

$$L_{n-k} \leq Z_k$$
, or equivalently, $L_k \leq Z_{n-k}$.

Also known as the "upper" and "lower" central series

Aside (exercise)

- The L_k 's fall faster than every other central series, and thus are term-by-term lower.
- The Z_k 's rise faster than every other central series, and thus are term-by-term higher.

Solvability and nilpotency in terms of extensions

Summary

- **Every finite group** can be constructed from **extensions of simple groups**.
- Solvable groups can be constructed from abelian extensions.
- Nilpotent groups can be constructed from central extensions.

