Visual Algebra

Lecture 6.10: Characterizations of nilpotent groups

Dr. Matthew Macauley

School of Mathematical & Statistical Sciences Clemson University South Carolina, USA http://www.math.clemson.edu/~macaule/

Chapter overview

Chemistry investigates how matter is assembled from basic "building blocks" (atoms).

Main goal

Understand how groups are assembled from basic "building blocks" (simple groups).

This chapter is broken into three parts; this lecture is on Part 3(e):

- 1. Finite abelian groups are products of cyclic groups.
- 2. The classification of finite simple groups: the "periodic table of groups."
- 3. Extensions of groups: like doing "all of chemistry for groups."
 - (a) Groups built from a (right) split extension (semidirect products)
 - (b) Groups built from a left split extension (direct products)
 - (c) Groups built from simple extensions (all groups)
 - (d) Groups built from abelian extensions (solvable groups)
 - (e) Groups built from central extensions (nilpotent groups)

The first two characterizations of nilpotency

Original definition

A finite group G is **nilpotent** if the ascending central series reaches the top of the lattice:

 $\langle 1 \rangle = Z_0 \trianglelefteq Z_1 \trianglelefteq \cdots \trianglelefteq Z_m = G$, where $Z_{k+1}/Z_k = Z(G/Z_k)$.

Theorem

The ascending central series reachers the top of the lattice iff the descending central series

$$G = L_0 \supseteq L_1 \supseteq \cdots \supseteq L_m = \langle 1 \rangle, \qquad L_{k+1} = [G, L_k]$$

reaches the bottom of the lattice. If this happens, it takes the same number of steps.

The $3^{\rm rd}$ characterization of nilpotency

Lemma

A finite groups is nilpotent if and only if it is constructible with central extensions.

This is equivalent to G having a central series:

$$G = C_0 \supseteq C_1 \supseteq \cdots \supseteq C_m = \langle 1 \rangle$$
, such that $C_{k-1}/C_k \leq Z(G/C_k)$

Products of nilpotent groups are nilpotent

Lemma

If $G = H \times K$, then $L_n(G) = L_n(H) \times L_n(K)$ for all n.

Proof

The proof is by induction. The base case is easy:

$$G = L_0(G) = L_0(H) \times L_0(K) = H \times K.$$

Next, suppose that $L_k(G) = L_k(H) \times L_k(K)$. Then

$$L_{k+1}(G) = [H \times K, L_k(H \times K)] = [H \times K, L_k(H) \times L_k(K)]$$
$$= [H, L_k(H)] \times [K, L_k(K)]$$
$$= L_{k+1}(H) \times L_{k+1}(K),$$

and the result follows inductively.

Corollary

If H and K are nilpotent, then so is $G = H \times K$.

The $4^{\rm th}$ characterization of nilpotency: normalizers grow

Proposition

A finite group G is nilpotent iff it has no proper fully unnormal subgroups $(H \leq N_G(H))$.

Proof

" \Rightarrow " Take the maximal Z_k containing H. We'll show $N_G(H)$ contains Z_{k+1} . Pick some $x \in Z_{k+1}$. (Need to show it normalizes H.) For all $g \in G$, we have $[x, g] \in Z_k$. Thus, $[x, h] = xhx^{-1}h^{-1} \in Z_k \le H$, for all $h \in H$. Since $xhx^{-1}h^{-1} \in H$, then $xhx^{-1} \in H$. Thus, $x \in N_G(H)$. " \Leftarrow " Exercise. (Need a result on Sylow p-subgroups.)

The $4^{\rm th}$ characterization of nilpotency: normalizers grow

Proposition

A finite group G is nilpotent iff it has no proper fully unnormal subgroups $(H \leq N_G(H))$.

Since $|cl_G(H)| = [G : N_G(H)]$, this just means that G has no "maximally wide conjugacy fans."

The $5^{\rm th}$ and $6^{\rm th}$ characterizations of nilpotency: Sylow *p*-subgroups

Proposition

A finite group is nilpotent iff it is the internal direct product of its Sylow *p*-subgroups.

Proof

" \Leftarrow " by previous lemma.

"⇒" Let $P \in Syl_p(G)$ be a Sylow *p*-subgroup.

 $\begin{array}{lll} P & \lneq & N_G(P) & by \ previous \ Proposition \\ & = & N_G(N_G(P)) & property \ of \ Sylow \ p-subgroups \\ & = & G & contrapositive \ of \ Prop.: \ N_G(H) = H \ implies \ H = G \ . \end{array}$

Let P_1, \ldots, P_k be the distinct Sylow p_i -subgroups of G. We need to verify:

- 1. $G = P_1 P_2 \cdots P_k$. \checkmark 2. each $P_i \trianglelefteq G$.
- 3. each P_i trivially intersects $Q_i := \langle P_j | j \neq i \rangle$.

If
$$g \in P_i \cap Q_i$$
, then $|g| = p_i^{\ell}$ divides $\prod_{j \neq i} p_j^{d_j}$, which is co-prime to p_i .

Corollary

A finite group is nilpotent iff all Sylow *p*-subgroups are normal.

 \checkmark

 \checkmark

 \checkmark

A technical lemma for the 7th characterization of nilpotency.

Frattini argument (exercise)

If G is a finite group and $P \leq H \leq G$ with $P \in Syl_p(H)$, then $G = N_G(P)H$.

Corollary (Case 3)

If G is a finite group and $P \leq H \leq G$ with $P \in Syl_p(H)$ and $N_G(P) \leq H$, then

(i) $H \trianglelefteq G \Rightarrow P \trianglelefteq G$, (ii) $P \oiint G \Rightarrow H \oiint G$.

The $7^{\rm th}$ characterization of nilpotency.

Frattini argument corollary (Case 3)If G is a finite group and $P \leq H \trianglelefteq G$ with $P \in Syl_p(H)$ and $N_G(P) \leq H$, then(i) $H \trianglelefteq G \Rightarrow P \trianglelefteq G$,(ii) $P \nleq G \Rightarrow H \nleq G$.

Proposition

A finite group is nilpotent iff every maximal subgroup is normal.

Proof

"⇒" Let $M \leq G$ be maximal normal. Then $M \leq N_G(M) \leq G \Rightarrow N_G(M) = G$.

" \Leftarrow " Let $P \leq G$ be a Sylow *p*-subgroup.

Suppose $P \not \leq G$, and let *M* be a maximal subgroup containing its normalizer:

$$P \leq N_G(P) \leq M \leq G.$$

By Frattini (Case 3), $P \not \leq G \Rightarrow M \not \leq G$, a contradiction.

 \checkmark

Summary of nilpotent groups

Theorem

A finite group G is **nilpotent** if any of the following conditions hold:

- 1. $Z_n = G$ for some *n* ("the ascending central series reaches the top")
- 2. $L_m = \langle 1 \rangle$ for some *m*, ("descending central series reaches the bottom")
- 3. G is constructible with central extensions.
- 4. $H \leq N_G(H)$ for all proper subgroups, ("no fully unnormal subgroups")
- 5. G is the direct product of its Sylow p-subgroups.
- 6. All Sylow *p*-subgroups are normal (or equivalently, $n_p = 1$).
- 7. Every maximal subgroup of G is normal.

