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Motivation: constructing Q from Z

Rational numbers are ordered pairs under an equivalence, e.g., % = % = % =

Equivalence of fractions
Given a, b, c,d € Z, with b, d # 0,

- =— if and only if ad = bc.

We can mimic this construction in any integral domain.
Definition
Given an integral domain R, its field of fractions is the set
Rx R*={(a,b)|a b€ R, b0},
under the equivalence (a1, b1) ~ (a2, b) iff a1br = bray.
Denote the class containing (a, b) as a/b. Addition and multiplication are defined as

a ¢ ac
and - X == —.
b d bd

ad + bc

+ 52
d bd

a
b

It's not hard to show that + and X are well-defined.

M. Macauley (Clemson) Lecture 8.11: Rings of fractions Visual Algebra 2/11


mailto:macaule@clemson.edu

Embedding integral domains in fields

Lemma
In the construction of the field of fractions from R, we must verify:
B ~ is a equivalence relation
m the + and X operations are well-defined on (R x R*)/ ~
m the additive identity is O/r for any r € R*
m the multiplicative identity is r/r for any r € R*
m (a,b)"! =b/a.

Integral domain Field of fractions
Z (integers) Q (rationals)
Z[i] (Gaussian integers) Q(/) (Gaussian rationals)
F[x] (polynomials) F(x) (rational functions)

Every integral domain canonically embeds into its field of fractions, via r — r/1.

Moreover, this is the minimal field containing R.
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Co-universal property of the field of fractions

Proposition

Let R be an integral domain with embedding ¢: R < Fg into its field of fractions. Then
for every other embedding f: R — K into a field, there is a unique h: Fr — K such that

hov=f.
f f
R—— K r—— > f(r)
2 A
\ u//EI!h v Y/’h
FR I‘/].
.
Proof

Define the map
h: Fr — K, h(a/b) — h(a/1)h(b/1)~* = f(a)f(b)~L.
We need to show that h is

(i) well-defined (iii) injective

(i) a ring homomorphism, (iv) unique.
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Co-universal property of the field of fractions

Proposition

Let R be an integral domain with embedding ¢: R — Fg into its field of fractions. Then
for every other embedding f: R < K into a field, there is a unique h: Fr <— K such that

hot=f.
f f
R— 3 K r——— f(r)
o P
\ u/’ﬂ!h L Y//h
FR r/l
v
Proof

Define the map
h: FrR — K, h(a/b) — h(a/1)h(b/1)~t = f(a)f(b)™t = f(a)f(b~1).

(i) Well-defined. Suppose a/b=c/d <« ad=bc <& ab!=cd !l

h(a/b) = f(a)f(b~t) = f(ab™ ) = f(cd™1) = f(c)f(d) = h(c/d). v
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Co-universal property of the field of fractions

Proposition

Let R be an integral domain with embedding ¢: R < Fg into its field of fractions. Then
for every other embedding f: R < K into a field, there is a unique h: Fr — K such that
hotv="f.

f f
R—— " ik P ()
A A
\ u//ﬂlh ¢ Y//h
FR I‘/].

Proof
Define the map

h: Fr — K, h(a/b) — h(a/1)h(b/1)~t = f(a)f(b)~ = f(a)f(b~1).
(ii) Ring homomorphism. Suppose a/b = c¢/d. Then

h(a/b - c/d) = h(ac/bd) = f(ac)f(d~*b1) = f(a)f(c)f(d 1) F(b~1)

= f(a)f(b71) - f(c)f(d™1) = h(a/b)h(c/d). v
Verification of h(a/b+ c/d) = h(a/b) + h(c/d) is similar. (Exercise)
V.
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Co-universal property of the field of fractions

Proposition

Let R be an integral domain with embedding ¢: R < Fg into its field of fractions. Then
for every other embedding f: R — K into a field, there is a unique h: Fr — K such that
hov=f.

f £
R— 3 K r—— > f(r)
o pa
\ L///EI!h L Y//h
FR I‘/].

Proof
Define the map

h: Fr — K, h(a/b) — h(a/1)h(b/1)~t = f(a)f(b)~ = f(a)f(b~1).
(iii) Injective. It suffices to show that Ker(h) = {0}. Suppose
0 = h(a/b) = f(a)f(b)~! € K.
However, f(b)~1 # 0 since f is an embedding and b # 0.

Thus f(a) =0,s0 a=0in R. Thus a/1 = 0/1, the zero element in Fg.

v

4
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Co-universal property of the field of fractions

Proposition

Let R be an integral domain with embedding ¢: R — Fg into its field of fractions. Then
for every other embedding f: R < K into a field, there is a unique h: Fr — K such that
hovt="f.

f f
R——— K r———f(r)
o A
\ o \ o
FR r/1

Proof
Define the map

h: Fr — K, h(a/b) — h(a/1)h(b/1)~! = f(a)f(b)~* = f(a)f(b~1).
(iv) Uniqueness. Suppose there is another g: Fr — K such that f = go¢. Then
g(a/b) = g((a/1)- (/1)) = g(a/1)g(b/1)~* = g((a))9(e(b)) " = f(a)f(b) " = h(a/b),

which completes the proof. O

v
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Rings of fractions and localization
The co-universal property can be used as the definition of the field of fractions, allowing:
m the generalization to rings without 1, e.g., R = 2Z. (Exercise: show that Fz = Q.)

m the generalization to constructing fractions of certain subsets.
Let R be commutative, D C R nonempty and multiplicatively closed with no zero divisors.
We can carry out the same construction of the set
Rx D= {(r d)|reR, de D}, (n,di) ~ (r2, do) iff rdo = rods.

The resulting ring is the localization of R at D, denoted D™IR.

Proposition (HW)

Let R be a commutative ring with embedding ¢: R < D~!R. Then for every other
embedding f: R < S to a ring where f(D) are units, there is a unique h: D7'R — S such
that hot = f.

f f
R——S r—— f(r)
1 s
\ V//H!h ¢ \(//h
D-1R r/1
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Localization with zero divisors

We can generalize this further! Allow D to contain zero divisors.
The mapping R — D~1R sending r to its equivalence class is no longer injective:
t: R— D7IR, t(z) =0, for all zero divisors z € D.

We still have a co-universal property, that could have been the definition.

Proposition (exercise)

Let R be a commutative ring with .: R — D~1R. For every other f: R — S to a ring
where the non zero-divisors in f(D) are units, there is a unique h: D™'R — S such that
hovt=f.

f £
R— 5 r— 5 f(r)
Al R
\ e ¢ 7 h
’ X
D-1R r/1

Thus, D~!R is the “smallest ring” where all non zero-divisors in D are invertible.
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Examples of rings of fractions

1. If Ris an integral domain and D = R*, then D™1R is its field of fractions.
2. If D is the set of non zero divisors, then D~1R is the total ring of fractions of R.

3. If non-unit of R is a zero divisor, then R is equal to its total ring of fractions.
Examples include Zp, X -+ X Znp,.

In these rings, every prime ideal is maximal (exercise).
4. The localization of R = F[x] at D = {x" | n € Z} are the Laurent polynomials:
D'R=Flx,x = {a—mx "+ +aax ' +a+ax+- - +ax"|a €F}
5. If R=Zand D= {5" | n € N}, then
Ap _ prly ai a
D R_Z[g]_{ao+g+§+~-+—

which are "polynomials in g" over Z.

6. If D= R — P for a prime ideal, then Rp := D™1R is the localization of R at P. Itis a
local ring — it has a unique maximal ideal, PRp.
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