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We are now going to expand our treatment of functions a bit and
look at the class of lower semicontinuous functions and the class
of convex functions.

These functions gives us some new insights into how we can try to
find extreme values of functions even when there is no compactness.

The function |x | clearly has an absolute minimum over < of value 0
and its domain is not compact. Note the function f (x) = |x | does
not have a derivative at 0 but the Left hand derivative at 0 is −1
and the right hand derivative is 1. It turns out |x | is a convex
function and we can define an extension of the idea of derivative,
the subdifferential ∂f which here would be ∂f (0) = [−1, 1], a
compact set! Note also as |x | → ∞, f (x)→∞ too. Also note
0 ∈ ∂f (0) which is like the condition that extreme values may occur
when the derivative is zero.

The function f (x) = x2 also has an absolute minimum of value 0
where f ′(0) = 0. It also satisfies |x | → ∞ implies f (x)→∞, it is a
convex function and its domain is not compact.
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Lower Semicontinuous Functions

Let’s start with a new result with continuous functions in the spirit of the

two examples we just used.

Theorem

Let Ω be a nonempty unbounded closed set of real numbers and let
f : Ω→ < be continuous. Assume f (x)→∞ when |x | → ∞. Then
inf(f (Ω)) is finite and there is a sequence (xn) ⊂ Ω so that
xn → x0 ∈ Ω and f (xn)→ f (x0) = inf(f (Ω)).

Proof

Let α = inf(f (Ω)). First, there is a sequence (yn = f (xn)) ⊂ Ω that
converges to α. If (xn) ⊂ Ω satisfies |xn| → ∞, we would have
f (xn)→∞. Then, we would know inf(f (Ω)) =∞ implying f (x) ≥ ∞
for all x in Ω. But we assumed f is finite on Ω, so this is not possible.
Hence, (xn) must be bounded. Thus, by the Bolzano Weierstrass
Theorem, there is a subsequence (x1n ) of (xn) converging to x0. This
means x0 is either an accumulation point in Ω or a boundary point of
Ω.
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Proof

Since Ω is closed, Ω contains its boundary points. So we know x0 ∈ Ω.
Since f is continuous at x0, we must have f (x1n )→ f (x0) as n1 →∞.
Since f (xn)→ α we also have f (x1n )→ α. Thus, f (x0) = α and we have
shown f has an absolute minimum at the point x0.

Note, the condition that f (x)→∞ when |x | → ∞ allows us to bound
the (xn) sequence. This is how we get around the lack of compactness in
the domain. We can relax the continuity assumption too. We can look at
functions which are lower semicontinuous.

Definition

Let f : dom(f )→ < be finite. We say f is lower semicontinuous at
p if lim f (p) = f (p). By definition, this means for all sequences (xn)
with xn → p and f (xn)→ a, we have limn→∞ f (xn) ≥ f (p).
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Here are two pairs of functions which show what the condition of lower
semicontinuity means graphically.
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Let’s relax our continuity condition into lower semicontinuity for the
theorem we just proved.

Theorem

Let Ω be a nonempty unbounded closed set of real numbers and let
f : Ω→ < be lower semicontinuous. Assume f (x)→∞ when
|x | → ∞. Then inf(f (Ω)) is finite and there is a sequence (xn) ⊂ Ω so
that xn → x0 ∈ Ω and f (xn)→ f (x0) = inf(f (Ω)).

Proof

Again, let α = inf(f (Ω)). There is a sequence (yn = f (xn)) ⊂ Ω that
converges to α. The arguments we just used still show (xn) must be
bounded. Thus, by the Bolzano Weierstrass Theorem, there is a
subsequence (x1n ) of (xn) converging to x0 and since Ω is closed, x0 is
in Ω. Since f is lower semicontinuous at x0, we must have
limn1→∞ f (x1n ) ≥ f (x0). Since f (xn)→ α we also have f (x1n )→ α.
Thus, α ≥ f (x0). But f (x0) ≥ α by the definition of an infimum.
Thus, f (x0) = α = inf(f (Ω)) and f has an absolute minimum at x0.
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The graph of a function f : dom(f )→ < is a subset of dom(f )×<.

gr(f ) = {(x , a) : x ∈ dom(f ) and f (x) = a}
and the epigraph of f is everything lying above the graph.

epi(f ) = {(x , b) : x ∈ dom(f ) and f (x) ≤ b}
We can now define what we mean by a convex function.

Definition

Let I be a nonempty interval of <. A function f : I → < is convex on
I if

f (tx + (1− t)y) ≤ tf (x) + (1− t)f (y), ∀x , y ∈ I and ∀t ∈ (0, 1)

f is strictly convex if

f (tx + (1− t)y) < tf (x) + (1− t)f (y), ∀x , y ∈ I and ∀t ∈ (0, 1)
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Convex Functions

Let Px be the point (x , f (x)) and Py be the point (y , f (y)). The f is
convex means the point (u, f (u)) on the graph of f , gr(f ), lies below the
line segment PxPy joining Px and Py . This is shown in the sketch below.

Note the epigraph of f , epi(f ), is the inside of the curve in this sketch.



MATH 4530: Analysis One

Convex Functions

This leads to a new definition of the convexity of f .

Definition

Let I be a nonempty interval of <. A function f : I → < is convex on
I if and only if epi(f ) is a convex subset of <2, where we recall a
convex subset of <2 is a set C so that given any two points P and Q
in C, the line segment PQ is contained in C.

Theorem

Let Px = (x , y), Px′ = (x ′, y ′) and Pu = (u, v) where x < u < x ′ be
three points in <2. Then the following three properties are equivalent.

1 Pu is below PxPx′ .

2 the slope of PxPu ≤ the slope of PxPx′ .

3 the slope of PxPx′ ≤ the slope of PuPx′ .
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Proof

The line segment PxPx′ in point slope form is z = y + y ′−y
x′−x (t − x) for

x ≤ t ≤ x ′. So at t = u, we have zu = y + y ′−y
x′−x (u − x). If Property (1)

holds, we have v ≤ y + y ′−y
x′−x (u − x). This implies

slope PxPu =
v − y

u − x
≤ y ′ − y

x ′ − x
= slope PxPx′

which is Property (2). It is easy to see we can reverse this argument to
show if Property (2) holds, then so does Property (1). So we have shown
Property (1) holds if and only if Property (2) holds.

Next, if Property (1) holds, since Pu is below the line segment, the slope
of the line segment PuPx′ is steeper than or equal to the slope of the line
segment PxPx′ . Look at the earlier picture which clearly shows this
although the role of y should be replaced by x ′ for our argument. Thus,
the slope of PxPx′ ≤ the slope of PuPx′ and so Property (3) holds.
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Proof

The same picture shows us we can reverse the argument to show if the
slope of PxPx′ ≤ the slope of PuPx′ then Pu must be below the line
segment PxPx′ . So Property (3) implies Property (1).

Hence, Property (2) implies Property (1) which implies Property (3).
And it is easy to reverse the argument to show Property (3) implies
Property (2). So all of these statements are equivalent.
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Now if x < u < x ′, then u = tx + (1− t)x ′ for some 0 < t < 1 and by
the convexity of f , we have f (u) ≤ tf (x) + (1− t)f (x ′). Letting
Px = (x , f (x)) and Px′ = (x ′, f (x ′)), convexity implies Pu = (u, f (u)) is
below the line segment PxPx′ and by the previous Theorem,

slope PxPu ≤ slope PxPx′ ≤ slope PuPx′

or

f (u)− f (x)

u − x
≤ f (x ′)− f (x)

x ′ − x
≤ f (x ′)− f (u)

x ′ − u

Since u = tx + (1− t)x ′ = t(x − x ′) + x ′, we see t = u−x′

x−x′ = x′−u
x′−x .

Thus, convexity can be written

f (u) ≤
(
x ′ − u

x ′ − x

)
f (x) +

(
u − x

x ′ − x

)
f (x ′)

For any y 6= x0, et S(y , x0) denote the slope term S(y , x0) = f (y)−f (x0)
y−x0 .
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Recall, we showed

f (u)− f (x)

u − x
≤ f (x ′)− f (x)

x ′ − x
≤ f (x ′)− f (u)

x ′ − u

for any x < u < x ′. Switching to u = x0, we have

S(x , x0) =
f (x)− f (x0)

x − x0
≤ f (x′)−f (x0)

x′−x0 = S(x ′, x0)

And this is true for all x < x ′.

So f is convex on I implies the slope function S(x , x0) is increasing on

the set I \ {x0} which is all of I except the point x0. This is called the

criterion of increasing slopes. It is a straightforward argument to see

we can show the reverse: if the criterion of increasing slopes hold, then f

is convex. We have a Theorem!
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Theorem

The Criterion of Increasing Slopes
Let I be a nonempty interval in <. Then f : I → < is convex ⇔ the
slope function S(x , x0) is increasing on I \ {x0} for all x0 ∈ I .

Proof

We have just gone over this argument.

Now let’s look at what we can do with this information. We will define

what might be considerd a lower and upper form of a derivative next.
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Theorem

Let f be convex on the interval I and let x0 be an interior point. Then

supx<x0
f (x)−f (x0)

x−x0 and infx>x0
f (x)−f (x0)

x−x0 are both finite and

sup
x<x0

f (x)− f (x0)

x − x0
≤ inf

x>x0

f (x)− f (x0)

x − x0
.

Proof

By the criterion of increasing slopes, f (x)−f (x0)
x−x0 is increasing as x

approaches x0 from below. If supx<x0
f (x)−f (x0)

x−x0 =∞, then there would
be a sequence (xn) in the interior of I , with xn 6= x0 < x and
f (xn)−f (x0)

xn−x0 > n. Since x0 is an interior point, choose a y > x0 in I and

apply the criterion of increasing slopes to see n < f (xn)−f (x0)
xn−x0 ≤ f (y)−f (x0)

y−x0 .
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Proof

But this tells us f (y) ≥ n(y − x0) + f (x0) implying f (y) must be infinite
in value. But f is finite on I so this is not possible. Thus, there is a

constant L > 0 so that supx<x0
f (x)−f (x0)

x−x0 = L.

We also know that by the criterion of increasing slopes that
f (x)−f (x0)

x−x0 ≤ f (y)−f (x0)
y−x0 for all x < x0 < y so we also have

supx<x0
f (x)−f (x0)

x−x0 ≤ f (y)−f (x0)
y−x0 for all y > x0 too.

But this then tells us supx<x0
f (x)−f (x0)

x−x0 ≤ infy>x0
f (y)−f (x0)

y−x0

We can do an argument similar to the one above to also show

infy>x0
f (y)−f (x0)

y−x0 is finite and so there is a positive constant K so that

infy>x0
f (y)−f (x0)

y−x0 = K . So we have shown

L = sup
x<x0

f (x)− f (x0)

x − x0
≤ inf

y>x0

f (y)− f (x0)

y − x0
= K .
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From this last theorem, these finite limits allows us to replace the idea of
a derivative at an interior point x0 for a convex function f . We set the
lower derivative, D−f (x0) and upper derivative of f , D+f (x0) at an
interior point to be the finite numbers

D−f (x0) = sup
x<x0

f (x)− f (x0)

x − x0
, D+f (x0) = inf

x>x0

f (x)− f (x0)

x − x0

Next, if [c , d ] ⊂ int(I ), choose c < x < x ′ < d . We can show
D+f (c) ≤ D−f (d) using a very long chain of inequalities. Be patient!

D+f (c) = inf
x̂>c

f (x̂)− f (c)

x̂ − c
≤ f (x)− f (c)

x − c
=

f (c)− f (x)

c − x
, increasing slopes

≤ sup
w<x

f (w)− f (x)

w − x
= D−f (x) ≤ D+f (x)

= inf
x̂>x

f (x̂)− f (x)

x̂ − x
≤ f (x ′)− f (x)

x ′ − x
=

f (x)− f (x ′)

x − x ′
.
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So continuing we have

≤ sup
w<x′

f (w)− f (x ′)

w − x ′
= D−f (x ′) ≤ D+f (x ′)

= inf
w>x′

f (w)− f (x ′)

w − x ′
≤ f (d)− f (x ′)

d − x ′
=

f (x ′)− f (d)

x ′ − d

≤ sup
w<d

f (w)− f (d)

w − d
= D−f (d).

We conclude for c < x < x ′ < d , D+f (c) ≤ f (x′)−f (x)
x′−x ≤ D−f (d).

If f (x′)−f (x)
x′−x > 0, we have | f (x

′)−f (x)
x′−x | ≤ D−f (d). If f (x′)−f (x)

x′−x < 0, we

have | f (x
′)−f (x)
x′−x | ≤ −D+f (c). Combining, we see∣∣∣∣ f (x ′)− f (x)

x ′ − x

∣∣∣∣ ≤ max{−D+f (c),D−f (d)}.
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If x = c or x ′ = d , we can do a similar analysis to get the same result.
So we have for c ≤ x < x ′ ≤ d∣∣∣∣ f (x ′)− f (x)

x ′ − x

∣∣∣∣ ≤ max{−D+f (c),D−f (d)}.

We have proven the following result.

Theorem

If f is convex on the interval I , if [c , d ] ⊂ int(I ), then there is a
positive constant L[c,d ] so that if c ≤ x < x ′ ≤ d , we have∣∣∣∣ f (x ′)− f (x)

x ′ − x

∣∣∣∣ ≤ L[c,d ].

Proof

We have just argued this. The constant is
L[c,d ] = max{−D+f (c),D−f (d)}.



MATH 4530: Analysis One

Convex Functions

Comment

From the above, we have |f (x ′)− f (x)| ≤ L[c,d ] |x ′ − x | which
immediately tells us f is continuous at each x in the interior of I . What
happens at the boundary of I is not known yet. Here is the argument.

Choose ε > 0 arbitrarily. Let δ = ε/L[c,d ]. Then
|y − x | < δ ⇒ |f (y)− f (x)| ≤ L[c,d ] ε/L[c,d ] = ε.

Comment

So this sort of a function can’t be convex.

f (x) =

{
x2, x ≤ 0

x2 − 2, x > 0

because f is not continuous at 0 and a convex function is continuous at
each point in the interior of its domain. You should look at the epigraph
here and make sure you understand why it is not a convex subset of <2.
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Homework 18

18.1 Draw f (x) = x2 + 4 on <. Is f convex?

18.2 Draw

f (x) =

 x4, x < 0
a, x = 0

x6 − 1, x > 0

Find a so that f is lsc.
Is it possible to choose a so that f is convex?

18.3 Let f (x) = |x |. Find D−f (0) and D+f (0). This is just a matter of
looking at slopes on the left and the right. You should get
D−f (0) = −1 and D+f (0) = +1.

18.4 Let f (x) = |x − 2|. Find D−f (2) and D+f (2).
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