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I To understand how to think about finding places where the
minimum and maximum of a function to two variables might occur,
all you have to do is realize it is a common sense thing.

I We already know that the tangent plane attached to the surface
which represents our function of two variables is a way to
approximate the function near the point of attachment. We have
seen in our pictures what happens when the tangent plane is flat.
This flatness occurs at the minimum and maximum of the function.

I It also occurs in other situations, but we will leave that more
complicated event for other courses. The functions we want to deal
with are quite nice and have great minima and maxima. However,
we do want you to know there are more things in the world and we
will touch on them only briefly.

I To see what to do, just recall the equation of the tangent plane
error to our function of two variables f (x , y).

f (x , y) = f (x0, y0) +∇(f )(x0, y0)[x − x0, y − y0]T

+(1/2)[x − x0, y − y0]H(x0 + c(x − x0), y0 + c(y − y0))[x − x0, y − y0]T

where c is some number between 0 and 1 that is different for each x .

I We also know that the equation of the tangent plane to f (x , y) at
the point x0, y0) is

z = f (x0, y0)+ <∇f (x0, y0),X − X0 > .

where X − X0 = [x − x0.y − y0]T .

I Now let’s assume the tangent plane is flat at (x0, y0). Then the
gradient ∇f (x0, y0) is the zero vector and we have ∂f

∂x (x0, y0) = 0

and ∂f
∂y (x0, y0) = 0. So the tangent plane error equation simplifies to

f (x , y) = f (x0, y0)

+(1/2)[x − x0, y − y0]H(x0 + c(x − x0), y0 + c(y − y0))[x − x0, y − y0]T



I Now let’s simplify this. The Hessian is just a 2× 2 matrix whose
components are the second order partials of f . Let

A(c) =
∂2f

∂x2
(x0 + c(x − x0), y0 + c(y − y0))

B(c) =
∂2f

∂x ∂y
(x0 + c(x − x0), y0 + c(y − y0))

=
∂2f

∂y ∂x
(x0 + c(x − x0), y0 + c(y − y0))

D(c) =
∂2f

∂y2
(x0 + c(x − x0), y0 + c(y − y0))

I Then, we have

f (x , y) = f (x0, y0) + (1/2)
[
x − x0 y − y0

] [A(c) B(c)
B(c) D(c)

] [
x − x0
y − y0

]

I We can multiply this out ( a nice simple pencil and paper exercise!)
to find

f (x , y) = f (x0, y0)

+1/2
(
A(c)(x − x0)2 + 2B(c)(x − x0)(y − y0) + D(c)(y − y0)2

)
I Now it is time to remember an old technique from high school –

completing the square. Remember if we had a quadratic like
u2 + 3uv + 6v2, to complete the square we take half of the number
in front of the mixed term uv and square it and add and subtract it
times v2 as follows.

u2 + 3uv + 6v2 = u2 + 3uv + (3/2)2v2 − (3/2)2v2 + 6v2.

I Now group the first three terms together and combine the last two
terms into one term.

u2 + 3uv + 6v2 =

(
u2 + 3uv + (3/2)2v2

)
+

(
6− (3/2)2

)
v2.



I The first three terms are a perfect square, (u + (3/2)v)2.
Simplifying, we find

u2 + 3uv + 6v2 =

(
u + (3/2)v

)2

+ (135/4) v2.

I This is called completely the square! Now let’s do this with the
Hessian quadratic we have. First, factor our the A(c). We will
assume it is not zero so the divisions are fine to do. Also, for
convenience, we will replace x − x0 by ∆x and y − y0 by ∆y This
gives

f (x , y) = f (x0, y0)

+
A(c)

2

(
(∆x)2 + 2

B(c)

A(c)
∆x ∆y +

D(c)

A(c)
(∆y)2

)
.

I One half of the ∆x∆y coefficient is B(c)
A(c) so add and subtract

(B(c)/A(c))2(∆y)2. We find

f (x , y) = f (x0, y0)

+
A(c)

2
×

(
(∆x)2 + 2

B(c)

A(c)
∆x∆y +

(
B(c)

A(c)

)2

(∆y)2

)

+
A(c)

2
×

(
−
(
B(c)

A(c)

)2

(∆y)2 +
D(c)

A(c)
(∆y)2

)
.

I Now group the first three terms together – the perfect square and
combine the last two terms into one. We have

f (x , y) = f (x0, y0)

+
A(c)

2

(∆x +
B(c)

A(c)
∆y

)2

+

(
A(c) D(c)− (B(c))2

(A(c))2

)
(∆y)2

 .



Now we know if a function g is continuous at a point (x0, y0) and
positive or negative , then it is positive or negative in a circle of radius r
centered at (x0, y0). Here is the formal statement.

Theorem
(Nonzero Values and Continuity)
If f (x0, y0) is a place where the function is positive or negative in
value, then there is a radius r so that f (x , y) is positive or negative in
a circle of radius r around the center (x0, y0).

Proof
We argue for the case g(x0, y0) > 0. Let ε = g(x0, y0)/2. Since g is
continuous at (x0, y0), there is a δ > 0 so that√

(x − x0)2 + (y − y0)2 < δ implies
−g(x0, y0)/2 < g(x , y)− g(x0, y0) < g(x0, y0)/2. Thus,
g(x , y) > g(x0, y0)/2 if (x , y) ∈ Bδ(x0, y0).

I Now getting back to our problem. We don’t want to look at
functions that are locally constant as they are not very interesting.
So we are assuming f (x , y), in addition to being differentiable, is
not locally constant. We have at this point where the partials are
zero, the following expansion

f (x , y) = f (x0, y0)

+
A(c)

2

(∆x +
B(c)

A(c)
∆y

)2

+

(
A(c) D(c)− (B(c))2

(A(c))2

)
(∆y)2

 .

I The algebraic sign of the terms after the function value f (x0, y0) are
completely determined by the terms which are not squared. We
have two simple cases:

I A(c) > 0 and A(c) D(c)− (B(c))2 > 0 which implies the term
after f (x0, y0) is positive.

I A(c) < 0 and A(c) D(c)− (B(c))2 > 0 which implies the term
after f (x0, y0) is negative.



I Now let’s assume all the second order partials are continuous at

(x0, y0). We know A(c) = ∂2f
∂x2 (x0 + c(x − x0), y0 + c(y − y0)) and

from our theorem, if ∂2f
∂x2 (x0, y0) > 0, then so is A(c) in a circle

around (x0, y0).

I The other term A(c) D(c)− (B(c))2 > 0 will also be positive is a
circle around (x0, y0) as long as
∂2f
∂x2 (x0, y0) ∂2f

∂y2 (x0, y0)− ∂2f
∂x∂y (x0, y0) > 0. We can say similar things

about the negative case.

I Now to save typing let ∂2f
∂x2 (x0, y0) = f 0xx , ∂2f

∂y2 (x0, y0) = f 0yy and
∂2f
∂x∂y (x0, y0) = f 0xy . So we can restate our two cases as

I f 0xx > 0 and f 0xx f
0
yy − (f 0xy )2 > 0 which implies the term after

f (x0, y0) is positive. This implies that f (x , y) > f (x0, y0) in a
circle of some radius r which says f (x0, y0) is a minimum value
of the function locally at that point.

I f 0xx < 0 and f 0xx f
0
yy − (f 0xy )2 > 0 which implies the term after

f (x0, y0) is negative. This implies that f (x , y) < f (x0, y0) in a
circle of some radius r which says f (x0, y0) is a maximum
value of the function locally at that point.

So we have come up with a great condition to verify if a place where the
partials are zero is a minimum or a maximum.

Theorem
Extrema Test
If the partials of f are zero at the point (x0, y0), we can determine if
that point is a local minimum or local maximum of f using a second
order test. We must assume the second order partials are continuous
at the point (x0, y0).

I If f 0xx > 0 and f 0xx f
0
yy − (f 0xy )2 > 0 then f (x0, y0) is a local

minimum.

I If f 0xx < 0 and f 0xx f
0
yy − (f 0xy )2 > 0 then f (x0, y0) is a local

maximum.

We just don’t know anything if the test f 0xx f
0
yy − (f 0xy )2 = 0.



Recall the definition of the determinant of a 2× 2 matrix:

A =

[
a b
c d

]
=⇒ det(A) = ad − bc.

So, since we assume the mixed partials match

H(x , y) =

[
fxx(x , y) fxy (x , y)
fyx(x , y) fyy (x , y)

]
=⇒

det(H(x , y)) = fxx(x , y) fyy (x , y)− (fxy (x , y))2

and at a critical point (x0, y0) where ∇f (x0, y0) =

[
0
0

]
we have

det(H(x0, y0)) = fxx(x0, y0) fyy (x0, y0)− (fxy (x0, y0))2

Using our usual shorthand notations, we would write this as

det(H0) = f 0xx f
0
yy − (f 0xy )2.

We can rewrite out second order test for extremal values using this

determinant idea:

Theorem
If the partials of f are zero at the point (x0, y0), we can determine if
that point is a local minimum or local maximum of f using a second
order test. We must assume the second order partials are continuous
at the point (x0, y0).

I If f 0xx > 0 and det(H0) > 0 then f (x0, y0) is a local minimum.

I If f 0xx < 0 and det(H0) > 0 then f (x0, y0) is a local maximum.

We just don’t know anything if the test det(H0) = 0.

Proof
We have shown this argument.



Recall at a critical point (x0, y0), we found that

f (x , y) = f (x0, y0)

+
A(c)

2

((
∆x +

B(c)

A(c)
∆y

)2

+

(
A(c) D(c)− (B(c))2

(A(c))2

)
(∆y)2

)
.

And we have been assuming A(c) 6= 0 here. Now suppose we knew
A(c) D(c)− (B(c))2 < 0. Then, using the usual continuity argument, we
know that there is a circle around the critical point (x0, y0) so that
A(c) D(c)− (B(c))2 < 0 when c = 0. This is the same as saying
det(H(x0, y0)) < 0. But notice that on the line going through the critical
point having ∆y = 0, this gives

f (x , y) = f (x0, y0) +
A(c)

2

(
∆x

)2

.

and on the line through the critical point with ∆x + B(c)
A(c) ∆y = 0. we have

f (x , y) = f (x0, y0) +
A(c)

2

(
A(c) D(c)− (B(c))2

(A(c))2

)
(∆y)2

Now, if A(c) > 0, the first case gives f (x , y) = f (x0, y0)+ a positive
number showing f has a minimum on that trace.

However, the second case gives f (x , y) = f (x0, y0)− a positive number
which shows f has a maximum on that trace.

The fact that f is minimized in one direction and maximized in another
direction gives rise to the expression that we consider f to behave like a
saddle at this critical point.

The analysis is virtually the same if A(c) < 0, except the first trace has
the maximum and the second trace has the minimum. Hence, the test for
a saddle point is to see if det(H(x0, y0)) < 0.

If A(c) = 0, we have to argue differently.



We are in the case where det(H(x0, y0)) < 0 which we know means we
can assume A(c)D(c)− (B(c))2 < 0 also.l If A(c) = 0, we must
B(c) 6= 0. We thus have

f (x , y) = f (x0, y0) + B(c)∆x ∆y + (1/2)D(c)(∆y)2

= f (x0, y0) + (1/2)

(
2B(c)∆x + D(c)∆y)

)
∆y

If D(c) = 0, f (x , y) = f (x0, y0) + B(c)∆x ∆y and choosing the paths
∆x = ±∆y , we have f (x , y) = f (x0.y0)± B(c)(∆y)2 which tell us we
have a minimum on one path and a maximum on the other path; i.e. this
is a saddle.

If D(c) 6= 0, since

f (x , y) = f (x0, y0) + (1/2)

(
2B(c)∆x + D(c)∆y)

)
∆y

we can choose paths 2B(c)∆x = D(c)∆y and 2B(c)∆x = −3D(c)∆y

to give f (x , y) = f (x0, y0) + D(c)(∆y)2 or

f (x , y) = f (x0, y0)− D(c)(∆y)2 and again, on one path we have a

minimum and on the other a maximum implying a saddle.

Now the second order test fails if det(H(x0, y0)) = 0 at the critical point
as in that case, the surface can have a minimum, maximum or saddle.

I f (x , y) = x4 + y4 has a global minimum at (0, 0) but at that point

H(x , y) =

[
12x2 0

0 12y2

]
=⇒ det(H(x0, y0)) = 144x2y2.

and hence, det(H(x0, y0)) = 0.

I f (x , y) = −x4 − y4 has a global maximum at (0, 0) but at that
point

H(x , y) =

[
−12x2 0

0 −12y2

]
=⇒ det(H(x0, y0)) = 144x2y2.

and hence, det(H(x0, y0)) = 0 as well.

I Finally, f (x , y) = x4 − y4 has a saddle at (0, 0) but at that point

H(x , y) =

[
12x2 0

0 −12y2

]
=⇒ det(H(x0, y0)) = −144x2y2.

and hence, det(H(x0, y0)) = 0 again.



Hence, since we have covered all the cases:

Theorem
If the partials of f are zero at the point (x0, y0), we can determine if
that point is a local minimum or local maximum of f using a second
order test. We must assume the second order partials are continuous
at the point (x0, y0).

I If f 0xx > 0 and det(H0) > 0 then f (x0, y0) is a local minimum.

I If f 0xx < 0 and det(H0) > 0 then f (x0, y0) is a local maximum.

I If det(H0) < 0, then f (x0, y0) is a local saddle.

We just don’t know anything if the test det(H0) = 0.

Proof
We have shown this argument.

Example
Use our tests to show f (x , y) = x2 + 3y2 has a minimum at (0, 0).

Solution
The partials here are fx = 2x and fy = 6y . These are zero at x = 0 and
y = 0. The Hessian at this critical point is

H(x , y) =

[
2 0
0 6

]
= H(0, 0).

as H is constant here. Our second order test says the point (0, 0)
corresponds to a minimum because fxx(0, 0) = 2 > 0 and
fxx(0, 0) fyy (0, 0)− (fxy (0, 0))2 = 12 > 0.



Example
Use our tests to show f (x , y) = x2 + 6xy + 3y2 has a saddle at (0, 0).

Solution
The partials here are fx = 2x + 6y and fy = 6x + 6y . These are zero at
when 2x + 6y = 0 and 6x + 6y = 0 which has solution x = 0 and y = 0.
The Hessian at this critical point is

H(x , y) =

[
2 6
6 6

]
= H(0, 0).

as H is again constant here. Our second order test says the point (0, 0)
corresponds to a saddle because fxx(0, 0) = 2 > 0 and
fxx(0, 0) fyy (0, 0)− (fxy (0, 0))2 = 12− 36 < 0.

Example
Show our tests fail on f (x , y) = 2x4 + 4y6 even though we know there is
a minimum value at (0, 0).

Solution
For f (x , y) = 2x4 + 4y6, you find that the critical point is (0, 0) and all
the second order partials are 0 there. So all the tests fail. Of course, a
little common sense tells you (0, 0) is indeed the place where this
function has a minimum value. Just think about how it’s surface looks.
But the tests just fail. This is much like the curve f (x) = x4 which has a
minimum at x = 0 but all the tests fail on it also.



Example
Show our tests fail on f (x , y) = 2x2 + 4y3 and the surface does not have
a minimum or maximum at the critical point (0, 0).

Solution
For f (x , y) = 2x2 + 4y3, the critical point is again (0, 0) and
fxx(0, 0) = 4, fyy (0, 0) = 0 and fxy (0, 0) = fyx(0, 0) = 0. So
fxx(0, 0) fyy (0, 0)− (fxy (0, 0))2 = 0 so the test fails. Note the x = 0 trace
is 4y3 which is a cubic and so is negative below y = 0 and positive above
y = 0. Not much like a minimum or maximum behavior on this trace!
But the trace for y = 0 is 2x2 which is a nice parabola which does reach
its minimum at x = 0. So the behavior of the surface around (0, 0) is not
a maximum or a minimum. The surface acts a lot like a cubic. Do this in
MatLab

Solution

>> [ X , Y] = m e s h g r i d ( −1 : . 2 : 1 ) ;
>> Z = 2∗X. ˆ 2 + 4∗Y . ˆ 3 ;
>> s u r f (Z) ;

This will give you the surface. In the plot that is shown go to the tool
menu and click of the rotate 3D option and you can spin it around.
Clearly like a cubic! You can see the plot in the next slide.



Homework 38

38.1 This is a review of some ideas from statistics. Let {X1, . . . ,Xn} be
some data for N >> 1. The average of this set of data is
X = (1/N)

∑N
i=1 xi . The average of the squares of the data is

X 2 = (1/N)
∑N

i=1 x
2
i . Prove 0 ≤

∑N
i=1 (xi − X )2 = NX 2 − N(X )2

38.2 Given data pairs {(X1,Y1), . . . , (XN ,YN)}, the line of regression
through this data is the line y = mx + b which minimizes the error
function E (m, b) =

∑N
i=1 (YI −mXi − b)2. Find the slope and

intercept (m∗, b∗) which is a critical point for this minimization.
The formulae you derive here for m∗ and b∗ give the optimal slope
and intercept for the line of regression that best fits this data.
However, the proof of this requires the next problem.

38.3 Use the second order theory for the minimization of a function of
two variables to show that the error is a global minimum at the
critical point (m∗, b∗).
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