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Bounded Infinite Sets



Theorem
Bolzano Weierstrass Theorem
Every bounded sequence with an infinite range has at least one
convergent subsequence.

Proof
As discussed, we have already shown a sequence with a bounded finite
range always has convergent subsequences. Now we prove the case
where the range of the sequence of values{a1, a2 . . . , } has infinitely
many distinct values. We assume the sequences start at n = k and by
assumption, there is a positive number B so that −B ≤ an ≤ B for all
n ≥ k. Define the interval J0 = [α0, β0] where α0 = −B and β0 = B.
Thus at this starting step, J0 = [−B,B]. Note the length of J0,
denoted by `0 is 2B.
Let S be the range of the sequence which has infinitely many points
and for convenience, we will let the phrase infinitely many points be
abbreviated to IMPs.

Proof
Step 1:
Bisect [α0, β0] into two pieces u0 and u1. That is the interval J0 is the
union of the two sets u0 and u1 and J0 = u0 ∪ u1. Now at least one of
the intervals u0 and u1 contains IMPs of S as otherwise each piece has
only finitely many points and that contradicts our assumption that S has
IMPS. Now both may contain IMPS so select one such interval
containing IMPS and call it J1. Label the endpoints of J1 as α1 and β1;
hence, J1 = [α1, β1]. Note `1 = β1 − α1 = 1

2`0 = B We see J1 ⊆ J0 and

−B = α0 ≤ α1 ≤ β1 ≤ β0 = B

Since J1 contains IMPS, we can select a sequence value an1 from J1.
Step 2:
Now bisect J1 into subintervals u0 and u1 just as before so that
J1 = u0 ∪ u1. At least one of u0 and u1 contain IMPS of S.



Proof
Choose one such interval and call it J2. Label the endpoints of J2 as α2

and β2]; hence, J2 = [α2, β2]. Note `2 = β2 − α2 = 1
2`1 or

`2 = (1/4)`0 = (1/22)`0 = (1/2)B. We see J2 ⊆ J1 ⊆ J0 and

−B = α0 ≤ α1 ≤ α2 ≤ β2 ≤ β1 ≤ β0 = B

Since J2 contains IMPS, we can select a sequence value an2 from J2. It is
easy to see this value is different from an1 , our previous choice.
You should be able to see that we can continue this argument using
induction.

Proposition:
∀p ≥ 1, ∃ an interval Jp = [αp, βp] with the length of Jp, `p = B/(2p−1)
satisfying Jp ⊆ Jp−1, Jp contains IMPS of S and

α0 ≤ . . . ≤ αp−1 ≤ αp ≤ βp ≤ βp−1 ≤ . . . ≤ β0

. Finally, there is a sequence value anp in Jp, different from an1 , . . . , anp−1 .

Proof
We have already established the proposition is true for the basis step J1
and indeed also for the next step J2.
Inductive: We assume the interval Jq exists with all the desired
properties. Since by assumption, Jq contains IMPs, bisect Jq into u0 and
u1 like usual. At least one of these intervals contains IMPs of S. Call the
interval Jq+1 and label Jq+1 = [αq+1, βq+1]. We see immediately that

`q+1 = (1/2)`q = (1/2)(1/2q−1)B = (1/2q)B

with `q+1 = βq+1 − αq+1 with

αq ≤ αq+1 ≤ βq+1 ≤ βq.

This shows the nested inequality we want is satisfied.
Finally, since Jq+1 contains IMPs, we can choose anq+1 distinct from the
other ani ’s. So the inductive step is satisfied and by the POMI, the
proposition is true for all n.



Proof

I From our proposition, we have proven the existence of three
sequences, (αp)p≥0, (βp)p≥0 and (`p)p≥0 which have various
properties.

I The sequence `p satisfies `p = (1/2)`p−1 for all p ≥ 1. Since
`0 = 2B, this means `1 = B, `2 = (1/2)B, `3 = (1/22)B leading to
`p = (1/2p−1)B for p ≥ 1.

I

−B = α0 ≤ α1 ≤ α2 ≤ . . . ≤ αp

≤ . . . ≤
βp ≤ . . . ≤ β2 ≤ . . . ≤ β0 = B

I Note (αp)p≥0 is bounded above by B and (βp)p≥0 is bounded below
by −B. Hence, by the completeness axiom, inf (βp)p≥0 exists and
equals the finite number β; also sup (αp)p≥0 exists and is the finite
number α.

Proof

I So if we fix p, it should be clear the number βp is an upper bound
for all the αp values ( look at our inequality chain again and think
about this ). Thus βp is an upper bound for (αp)p≥0 and so by
definition of a supremum, α ≤ βp for all p. Of course, we also know
since α is a supremum, that αp ≤ α. Thus, αp ≤ α ≤ βp for all p.

I A similar argument shows if we fix p, the number αp is an lower
bound for all the βp values and so by definition of an infimum,
αp ≤ β ≤ βp for all the αp values

I This tells us α and β are in [αp, βp] = Jp for all p. Next we show
α = β.



Proof

I Let ε > 0 be arbitrary. Since α and β are in Jp whose length is
`p = (1/2p−1)B, we have |α− β| ≤ (1/2p−1)B. Pick P so that
1/(2P−1) < ε. Then |α− β| < ε. But ε > 0 is arbitrary. Hence, by
a previous propostion, α− β = 0 implying α = β.

I We now must show ank → α = β. This shows we have found a
subsequence which converges to α = β. We know αp ≤ anp ≤ βp
and αp ≤ α ≤ βp for all p. Pick ε > 0 arbitrarily. Given any p, we
have

|anp − α| = |anp − αp + αp − α|, add and subtract trick

≤ |anp − αp|+ |αp − α| triangle inequality

≤ |βp − αp|+ |αp − βp| definition of length

= 2|βp − αp| = 2 (1/2p−1)B.

Choose P so that (1/2P−1)B < ε/2. Then, p > P implies
|anp − α| < 2 ε/2 = ε. Thus, ank → α.

Theorem
Bolzano Weierstrass Theorem in <2

Every bounded sequence of vectors with an infinite range has at least
one convergent subsequence.

Proof
We will just sketch the argument. The sequence of vectors looks like

xn =

[
x1n
x2n

]
where each element in the sequence is a two dimensional vector. Since
this sequence is bounded, there are positive numbers B1 and B2 so
that

−B1 ≤ x1n ≤ B1 and −B2 ≤ x2n ≤ B2



Proof
The same argument we just used for the Bolzano - Weierstrass Theorem
in < works. We find a vector [α1, α2]′ and subsequences x11n and x12n with
x11n → α1 and x12n → α2. And we can easily see [α1, α2]′ is a vector living
in the rectangle [−B1,B1]× [−B2.B2].

Note the argument here is to bisect each side of the rectangle
[−B1,B1]× [−B2.B2]. This gives 4 new subrectangles and at least one of
these pieces must contain IMPs of the original vector sequence. You pick
one of these pieces that has IMPs and then bisect that piece on each axis
into 4 new pieces, pick a piece that has IMPs and so on.

Convergence arguments are indeed a bit different as we have to measure
distance between vectors using the usual Euclidean norm
||x − y || =

√
(x1 − y1)2 + (x2 − y2)2 for two vectors x and y .

A little thought shows

Theorem
Bolzano Weierstrass Theorem in <3

Every bounded sequence of vectors with an infinite range has at least
one convergent subsequence.

Proof
We now bisect each edge of a cube and there are now 8 pieces at each
step, at least one of which has IMPs. The vectors are now 3
dimensional but the argument is quite similar.



A little thought also shows

Theorem
Bolzano Weierstrass Theorem in <4

Every bounded sequence of vectors with an infinite range has at least
one convergent subsequence.

Proof
We now bisect each edge of what is called a 4 dimensional hypercube
and there are now 16 pieces at each step, at least one of which has
IMPs. The vectors are now 4 dimensional but the argument is quite
similar.

POMI allows us to extend the result to

Theorem
Bolzano Weierstrass Theorem in <n

Every bounded sequence of vectors with an infinite range has at least
one convergent subsequence.

Proof
We have done the basis step and in the induction step we assume it is
true for n − 1 and show it is true for n. We now bisect each of the n
edges of what is called a n dimensional hypercube and there are now
2n pieces at each step, at least one of which has IMPs. The vectors
are now n dimensional but the argument is again quite similar.



A more general type of result can also be shown which deals with sets
which are bounded and contain infinitely many elements.

Definition
Let S be a nonempty set. We say the real number a is an
accumulation points of S if given any r > 0, the set

Br (a) = {x : |x − a| < r}

contains at least one point of S different from a. The set Br (a) is
called the ball or circle centered at a with radius r .

Example
S = (0, 1). Then 0 is an accumulation point of S as the circle Br (0)
always contains points greater than 0 which are in S , Note Br (0) also
contains points less than 0. Note 1 is an accumulation point of S also.
Note 0 and 1 are not in S so accumulation points don’t have to be in the
set. Also note all points in S are accumulation points too. Note the set
of all accumulation points of S is the interval [0, 1].

Example
S = ((1/n)n≥1. Note 0 is an accumulation point of S because every
circle Br (0) contains points of S different from 0. Also, if you pick a
particular 1/n in S , the distance from 1/n to its neighbors is either
1/n − 1/(n + 1) or 1/n − 1/(n − 1). If you let r be half the minimum of
these two distances, the circle Br (1/n) does not contain any other points
of S . So no point of S is an accumulation point. So the set of
accumulation points of S is just one point, {0}.



Homework 8

8.1 Let S = (2, 5). Show 2 and 5 are accumulation points of S .

8.2 Let S = (cos(nπ/4))n≥1. Show S has no accumulation points.

8.3 This one is a problem you have never seen. So it requires you look
at it right! Let (an) be a bounded sequence and let (bn) be a
sequence that converges to 0. Then anbn → 0. This is an ε− N
proof. Note this is not true if (bn) converges to a nonzero number.

8.4 If you know (anbn) converges does that imply both (an) and (bn)
converge?
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