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Let’s look at addition of logarithms in more general terms. What
happens if we add two areas under the curve 1

x ? Let’s assume we have
two real numbers a and b, both of which are larger than 1. For
convenience, we can assume also that b is larger than a. Hence, we have
the picture shown below.

The graph of the curve 1
x is shown. We

seek a point c on the x - axis where the∫ a
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t
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Figure: We consider two different areas under the curve: the area from 1
to a and the area from 1 to b with a and b both larger than 1

And we have that ∫ a
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1

x
dx <

∫ b

1

1

x
dx .

Now make a change of variable in the first area integral. We let u = bx
and we find ∫ a

1

1

x
dx =

∫ ab

b

1

u
du

Since the name of the variable of integration is not important, when we
add the two areas, we obtain∫ a
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We conclude that∫ a

1
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1

x
dx =

∫ ab
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1

x
dx

We can argue in a similar way if the relationship between a and b is
reversed so that a is larger than b. Finally, if a and b are the same
number, the argument is still valid, although easier!

We have shown how the argument goes for the case that both a and b

are larger than 1.

It is very similar to argue the case for a and b both less than 1. The
picture is now what you see below. We will assume that a is less than b
just as before.

The graph of the curve 1
x is shown. We

seek a point c on the x - axis where the∫ 1
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Figure: We consider two different areas under the curve: the area from a
to 1 and the area from b to 1 with a and b both less than 1



Since a is less than b, this time we have∫ 1

a

1

x
dx >

∫ 1

b

1

x
dx

Now make a change of variable in the second area integral. We let
u = ax and we find ∫ 1

b

1

x
dx =

∫ a

ab

1

u
du

Since 0 < a < 1, we see that

ab − a = b (a − 1) < 0.

Thus, we see the numbers ab, a and b are ranked as ab < a < b < 1.
Then, since the name of the variable of integration is not important,
when we add the two areas, we obtain∫ 1
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1

x
dx +
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1

x
dx =
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We conclude that∫ 1
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x
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∫ 1

ab

1

x
dx

Since a and b are both less than one, the product ab is also less than
one. Hence the usual properties of the Riemann Integral then allow us to
rewrite as

−
∫ a
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x
dx −
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1

x
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Multiplying through by −1, we have∫ a
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x
dx =
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We see in this case, c is ab.



The last case is where a is less than 1 and b is larger than one. We want
to find a number c so that∫ a

1

1

x
dx +

∫ b

1

1

x
dx =

∫ c

1

1

x
dx

The difference in this case is that the first integral
∫ a

1
1
x dx is negative.

This case is shown in Figure 3.

The graph of the curve 1
x is shown. We

seek a point c on the x - axis where the∫ 1
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Figure: We consider two different areas under the curve: the area from a
to 1 and the area from 1 to b with a less than 1 and b larger than 1

Thus we want to find a c so that

−
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Now make a change of variable in −
∫ 1

a
1
x dx . We let u = bx and we find

−
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Since the name of the variable of integration is not important, we find∫ a
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We conclude that∫ a

1
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x
dx +
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x
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1
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x
dx .

Thus, in the case a is less than 1 and b is larger than 1, c is ab also.



We can summarize all these results as follows

Theorem
Sum of Logs Rule:
If a and b are two positive numbers, then ln(a) + ln(b) = ln(ab).

Now note that if a > 0, then applying the rule above, we have

ln(a/a) = ln(a (1/a)) = 0 =⇒ ln(a) + ln(1/a) = 0

Thus, we have ln(1/a) = − ln(a) for all positive a. This tells us
immediately that if a and b are positive, we have

ln(a/b) = ln(a)− ln(b)

which leads to the theorem

Theorem
Difference of Logs Rule:
If a and b are two positive numbers, then ln(a)− ln(b) = ln(a/b).

I Let’s backup and talk about the idea of an inverse function. Say we
have a function y = f (x) like y = x3. Take the cube root of each
side to get x = y1/3. Just for fun, let g(x) = x1/3; i.e., we switched
the role of x and y in the equation x = y1/3.

I Now note some interesting things:

f (g(x)) = f (x1/3) =

(
x1/3

)3

= x

g(f (x)) = g(x3) =

(
x3
)1/3

= x .



I Now the function I (x) = x is called the identity because it takes an
x as an input and does nothing to it. The output value is still x . So
we have f (g) = I and g(f ) = I . When this happens, the function g
is called the inverse of f and is denoted by the special symbol f −1.

I Of course, the same is true going the other way: f is the inverse of
g and could be denoted by g−1. Another more abstract way of
saying this is

f −1(x) = y ⇔ f (y) = x .

I Now look at next picture We draw the function x3 and its inverse
x1/3 in the unit square. We also draw the identity there which is
just the graph of y = x ; i.e. a line with slope 1.

I If you take the point (1/2, 1/8) on the graph of x3 and draw a line
from it to the inverse point (1/8, 1/2) you’ll note that this line is
perpendicular to the line of the identity. This will always be true
with a graph of a function and its inverse.

I Now also note that x3 has a positive derivative always and so is
always increasing. It seems reasonable that if we had a function
whose derivative was positive all the time, we could do this same
thing. We could take a point on that function’s graph, say (c , d),
reverse the coordinates to (d , c) and the line connecting those two
pairs would be perpendicular to the identity line just like in our
figure. So we have a geometric procedure to define the inverse of
any function that is always increasing.



I What about ln(x)? It has derivative 1/x for all positive x , so it
must be always increasing. So it has a differentiable inverse which
we can call ln−1(x) which is called the exponential function which
is denoted by exp(x).

I The inverse is defined by the if and only relationship
(ln)−1(x) = y ⇔ ln(y) = x

I or, using the exp notation exp(x) = y ⇔ ln(y) = x .

I A little thought tells us the range of ln(x) is all real numbers as for
x > 1, ln(x) gets as large as we want and for 0 < x < 1, as x gets

closer to zero, the negative area −
∫ 1

x
1/tdt approaches −∞.

I By definition then

I ln( exp(x) ) = x for −∞ < x <∞; ie for all x .
I exp( ln(x) ) = x for all x > 0.



I We know ln( exp(x)) = x . Take the derivative of both sides:(
ln( exp(x)

)′
=

(
x

)′
= 1

I Using the chain rule, for any function u(x),(
ln( u(x)

)′
=

1

u(x)
u′(x).

I So (
ln( exp(x)

)′
=

1

exp(x)

(
exp(x)

)′
.

I Using this, we see 1
exp(x)

(
exp(x)

)′
= 1 and so

(
exp(x)

)′
= exp(x).

It is easy to see by a simple POMI that ln(ap) = p ln(a) when p is
a positive integer. So, if u = ap/q, we have uq = a1/p.

We also know by another simple POMI that for any positive integer
q, ln(a1) = ln((a1/q)q) = q ln(a1/q). Thus, ln(a1/q) = (1/q) ln(a).

Combining, we see

ln(ap/q) = p ln(a1/q) = (p/q) ln(a)

We can do this for any p/q ∈ Q even if p or q are negative
integers.

Now let (xn) be any sequence of real numbers which converges to
the number x . By the continuity of exp we then know

lim
n→∞

exp(xn ln(a)) = exp(( lim
n→∞

xn) ln(a))

Thus, we can uniquely define the function ax by
ax = limn→∞ exp(xn ln(a)).



In particular if xn → α, we have aα = exp(α ln(a)) is a uniquely defined
continuous function which by the chain rule is differentiable.

Also, this means the function ex = exp(x ln(e)) = exp(x) is another way
to write our inverse function exp(x). Now let α be any real number and
let (pn/qn) be a sequence of rational numbers which converges to α. We
can always find such a sequence because not matter what circle Br (α) we
choose, we can find a rational number within a distance of r from α. We
also know ln(x) is continuous on (0,∞). Then for a positive number a,
we have

lim
n→∞

ln(apn/qn) = lim
n→∞

(pn/qn) ln(a) = α ln(a)

But the function ax is continuous, so

lim
n→∞

(apn/qn) = aα =⇒ ln(aα) = α ln(a)

This is called the power rule for the logarithm function: ln(ar ) = r ln(a)

for all positive a and any real number r .

Theorem
Properties Of The Natural Logarithm
The natural logarithm of the real number x satisfies

I ln is a continuous function of x for positive x,

I limx →∞ ln(x) = ∞,

I limx → 0+ ln(x) = −∞,

I ln(1) = 0, ln(e) = 1,

I ( ln(x) )′ = 1
x ,

I If x and y are positive numbers then ln(xy) = ln(x) + ln(y).

I If x and y are positive numbers then ln

(
x
y

)
= ln(x) − ln(y).

I If x is a positive number and y is any real number then

ln

(
xy
)

= y ln(x).



Let u = ln(x) and v = ln(y). Then

I x = exp(u) and y = exp(v).

I Let w = exp(u + v). Then by definition, ln(w) = u + v .

I But u + v = ln(x) + ln(y) = ln(x y).

I So ln(w) = ln(x y).

I Then by definition, w = x y = exp(u) exp(v).

I So in general exp(u + v) = exp(u) exp(v).

Let u = ln(x) and v = ln(y). Then

I x = exp(u) and y = exp(v).

I Let w = exp(u − v). Then by definition, ln(w) = u − v .

I But u − v = ln(x) − ln(y) = ln(x/y).

I So ln(w) = ln(x/y).

I Then by definition, w = x/y = exp(u)/exp(v).

I Further, exp(0) = 1 because ln(1) = 0, so exp(x − x) = exp(0) = 1
implying exp(x) exp(−x) = 1. Hence, exp(−x) = 1/exp(x).

I So in general exp(u − v) = exp(u)/exp(v) = exp(u) exp(−v).



Let u = ln(x) and r be any power. Then

I x = exp(u).

I Let w = (exp(u))r . Then by definition, ln(w) = r ln(exp(u)) = r u.

I Or w = exp(r u).

I So in general

(
exp(u)

)r

= exp(ru).

Theorem
Properties Of The Exponential Function
The exponential function of the real number x, exp(x), satisfies

I exp is a continuous function of x for all x,

I limx →∞ exp(x) = ∞,

I limx →−∞ exp(x) = 0,

I exp(0) = 1,

I ( exp(x) )′ = exp(x),

I If x and y are any numbers then exp(x + y) = exp(x) exp(y).

I If x and y are any numbers then exp(x − y) = exp(x) exp(−y)

or exp(x − y) = exp(x)
exp(y) .

I If x and y are any numbers then

(
exp(x)

)y

= exp(xy).



Another way to derive the logarithm and exponential functions is to
define e = limn→∞(1 + 1/n)n. Then we derive the properties of ex and
show it has an inverse which we call ln(x).

Let’s assume our new way of doing this via integration gives the logarithm
type function H(x) =

∫ x

1
1/tdt with inverse F (x). The functions F (x)

and ex have the same Taylor polynomials and error functions. We have

F (x) =
N∑

n=0

xn/n! + F (cN+1) xN+1/(N + 1)!

ex =
N∑

n=0

xn/n! + edN+1 xN+1/(N + 1)!

where cN+1 and dN+1 are points between 0 and x . But all these
derivatives of any order are still F (x) and ex . Thus

F (x)− ex = (F (cN+1) + edN+1)
xN+1

(N + 1)!

Now both F and exp are continuous on the interval from 0 to x , so there
are constants Ax and Bx which are bounds for them. So we have

|F (x)− ex | ≤ (Ax + Bx)
xN+1

(N + 1)!
→ 0

as N →∞ since x is fixed.

Thus, given ε > 0, there is a Q so that (Ax + Bx) |x|
N+1

(N+1)! < ε if

N + 1 > Q. Hence, |F (x)− ex | < ε with ε arbitrary. This tells us
F (x) = ex .

Another easier way to see this (!!) is to note since
H ′(x) = (ln(x))′ = 1/x , H(x) and ln(x) are both antiderivatives of 1/x .
Hence, they differ by a constant. But since H(1) = ln(1) = 0, they must
be the same.

So e = f even though we have used two different ways to find them!



Let’s graph exp(x) and ln(x) on the same graph.

Homework 15

15.1 Prove e−t ≥ 1− t for 0 ≤ t ≤ 1.

15.2
(a): Prove (1− t)N ≥ 1− Nt for N ≥ 1 for 0 ≤ t ≤ 1
(b): Prove e−Nt ≥ 1− Nt for N ≥ 1 for 0 ≤ t ≤ 1.

15.3 Assume f is continuous and satisfies |f (t)| ≤ e−αt for t ≥ 0
and some α > 0. Define the sequence (Ln) by
Ln =

∫ n
0 e−st f (t)dt for a fixed s. Prove (Ln) is a Cauchy

Sequence of real numbers and hence it must converge when
s + α > 0.
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