Department of Mathematical Sciences

Clemson University

Clemson, SC 29634-0921

Office: Martin O-206

Phone: (864) 656-5235

Fax: (864) 656-5230

E-mail:

- Ph.D., Virginia Polytechnic Institute and State University, 1997

- M.S., Virginia Polytechnic Institute and State University

- B.S., Yonsei University, South Korea

- Numerical Methods for PDEs
- Parallel Algorithms and Implementations
- Computational Optimal Control

- K. Rife and H. Lee, Least squares approach for the time-dependent nonlinear Stokes-Darcy system, in review.
- P. Kuberry and H. Lee, A decoupling algorithm for fluid-structure interaction problems based on optimization, in review.
- H. Lee and S. Xu, Numerical approximation of viscoelastic flows in an elastic medium, International Journal of Numerical Analysis & Modeling, 12, 2015, pp. 125-143.
- V.J. Ervin, E.W. Jenkins and H. Lee, Approximation of the Stokes-Darcy system by optimization, to appear in the Journal of Scientific Computing.
- J. Howell, H. Lee and S. Xu, Finite element approximation of viscoelastic flow in a moving domain, in review.
- K. Galvin and H. Lee, Analysis and approximation of the Cross model for quasi-Newtonian flows with defective boundary conditions, Appl. Math. and Compt., 222, 2013, pp. 244-254.
- J. Howell, H. Lee and S. Xu, Numerical study of a viscoelastic flow in a moving domain, Contemporary Mathematics, 586, 2013, pp. 181-188.
- T.F. Chen, H. Lee and C.C. Liu, Numerical approximation of the Oldroyd-B model by the weighted least squares/discontinuous Galerkin method, Numerical Methods for PDEs, 29, 2013, pp. 531-548.
- K. Galvin, H. Lee and L.G. Rebholz, Approximation of viscoelastic flow with defective boundary condition, J. of Non-Newtoninan Fluid Mechanics, 169-170, 2012, pp. 104-113.
- H. Lee, Numerical approximation of Quasi_Newtoninan flows by ALE-FEM, Numerical Methods for PDEs 28, 2012, pp. 1667-1695.
- K. Galvin, H. Lee and L.G. Rebholz, A Numerical Study for a Velocity-Vorticity-Helicity formulation of the 3D Time-Dependent NSE, International Journal of Numerical Analysis and Modeling, Series B, 2(4), 2011, pp.355-368.
- H. Lee, Optimal control for quasi-Newtonian flows with defective boundary conditionsM, Comput. Methods. Appl. Mech. Engrg., 200, 2011, pp. 2498-2506.
- H. Lee, M.A. Olshanskii, and L.G. Rebholz, On Error Analysis for the 3D Navier Stokes Equations in Velocity-Vorticity-Helicity Form, SIAM J. Numer. Anal., 49, 2011, pp. 711-732.
- C. Cox, H. Lee and D. Szurley, Optimal control of non-isothermal viscous fluid flow, Mathematical and Computer Modelling, 50, 2009, pp. 1142-1153.
- J. Borggaard, T. Iliescu, H. Lee, J.P. Roop and H. Son, A two-level Smagorinsky model, SIAM multiscale modeling and simulation 7, 2008, pp. 599-621.
- E. Jenkins and H. Lee,
A domain decomposition method for the Oseen-viscoelastic flow equations, Appl. Math.
and Compt. 195, 2008, pp. 127-141.

- V. Ervin, J. Howell and H. Lee,
A two-parameter defect-correction method for computation of steady-state viscoelastic Fluid
Flow, Appl. Math. and Compt. 196, 2008, pp. 818-834.

- H.C. Lee and H. Lee,
Analysis and finite element approximation of an Optimal Control Problem for the Oseen Viscoelastic Fluid Flow,
J. Math. Anal. Appl. 336, 2007, pp. 1090-1106.

- V. Ervin and H. Lee,
Numerical approximation of a quasi-Newtonian Stokes flow problem with defective boundary conditions, SIAM J. Num. Anal. 45, 2007, pp. 2120-2140.

- C. Cox, H. Lee and D. Szurley,
Finite element approximation of the non-isothermal Stokes-Oldroyd equations, Int. J. Numer. Anal. Mod. 4, 2007, pp.425-440.