Department of Mathematical Sciences

Clemson University

Clemson, SC 29634-0921

Office: Martin O-206

Phone: (864) 656-5235

Fax: (864) 656-5230

E-mail:

- Ph.D., Virginia Polytechnic Institute and State University, 1997

- M.S., Virginia Polytechnic Institute and State University

- B.S., Yonsei University, South Korea

- Numerical Methods for PDEs
- Parallel Algorithms and Implementations
- Computational Optimal Control

- H-C Lee and H. Lee, A weighted least-squares finite element method for Biot's consolidation problem, Int. J. Numer. Anal. and Mod., 19, 2022, pp. 386-403.

- T.T.P. Hoang, H Kunwar and H. Lee, Nonconforming time discretization based on Robin transmission conditions for the Stokes-Darcy system, Appl. Math. and Compt., 413, 2022, 126602 https://doi.org/10.1016/j.amc.2021.126602.

- H-C Lee and H. Lee, An a posteriori error estimator based on least-squares finite element solutions for viscoelastic fluid flows, Electronic Research Archive, 29, 2021, pp. 2755-2770.

- T.T.P. Hoang and H. Lee, A global-in-time domain decomposition method for the coupled nonlinear Stokes and Darcy flows, J. Sci. Comput., 87, 2021, https://doi.org/10.1007/s10915-021-01422-1.

- H-C Lee and H. Lee, An adaptive least-squares finite element method for Giesekus viscoelastic flow problems, Int. J. Comput. Math., 98, 2021, pp. 1974-1990.

- H Kunwar, H. Lee and K. Seelman, Second-order time discretization for a coupled quasi-Newtonian fluid-poroelastic system, Int. J. Numer. Methods Fluids, 92, 2020, pp. 687-702.

- H-C Lee and H. Lee, Numerical simulation of viscoelastic fluid flows past a transverse slot using least-squares finite element methods, J. Sci. Comput., 79, 2019, pp. 369- 388.

- T.F. Chen, H. Lee and C.C. Liu, A study on the Galerkinb least-squares method for the Oldroyd-B model, Comput. Methods Appl. Math., 18(2), 2018, pp. 181-198.

- H. Lee and S. Xu, Numerical approximation on viscoelastic fluid-structure interaction problems, International Journal of Numerical Analysis and Modeling, 15, 2018, pp. 579-593.

- V.J. Ervin, H. Lee and J. Ruiz-Raminez, Nonlinear Darcy fluid flow with deposition, Journal of Computational and Applied Mathematics, 309, 2017, pp. 79-94.

- H. Lee and S. Xu, Fully discrete error estimation for a Quasi-Newtonian fluid-structure interaction problem, Computers and Mathematics with Applications, 71, 2016, pp. 2373-2388..

- P. Kuberry and H. Lee, Convergence of a fluid-structure interaction problem decoupled by a Neumann control over a single time-step, J. Math. Anal. Appl., 437, 2016, pp. 645-667.

- H. Lee and S. Xu, Finite Element Error Estimation for Quasi-Newtonian Fluid-Structure Interaction Problems, Appl. Math. Comput., 274, 2016, pp. 93-105.

- A. Cesmelioglu, H. Lee, A. Quaini, K. Wang, and S.-Y. Yi, Optimization-based de- coupling algorithms for fluid-poroelastic system, In Topics in Numerical Partial Dif- ferential Equations and Scientific Computing, The IMA Volumes in Mathematics and its Applications 160, S.C. Brenner (ed.), 2016, pp. 137-176.

- V.J. Ervin, H. Lee and A.J. Salgado, Generalized Newtonian fluid flow through a porous medium, J. Math. Anal. Appl., 433, 2016, pp. 603-621.

- P. Kuberry and H. Lee, Analysis of a fluid-structure interaction problem recast in an optimal control setting, SIAM J. Num. Anal., 53, 2015, pp. 1464-1487.

- H. Lee and S. Xu, Numerical approximation of viscoelastic flows in an elastic medium, International Journal of Numerical Analysis & Modeling, 12, 2015, pp. 125-143.

- K. Rife and H. Lee, Least squares approach for the time-dependent nonlinear Stokes-Darcy system, Computers and Mathematics with Applications, 67, 2014, pp. 1806-1815.

- V.J. Ervin, E.W. Jenkins and H. Lee, Approximation of the Stokes-Darcy system by optimization, J. Sci. Comput., 59, 2014, pp.775-794.

- J. Howell, H. Lee and S. Xu, Finite element approximation of viscoelastic flow in a moving domain, Electronic Transactions on Numerical Analysis, 41,2014, pp. 306-327.

- J. Howell, H. Lee and S. Xu, Numerical study of a viscoelastic flow in a moving domain, Recent advances in scientific computing and applications, Amer. Math. Soc., Providence, RI, 586, 2013, pp. 181-188.

- P. Kuberry and H. Lee, A decoupling algorithm for fluid-structure interaction problems based on optimization, Comput. Methods. Appl. Mech. Engrg., 267, 2013, pp. 594-605.

- K. Galvin and H. Lee, Analysis and approximation of the Cross model for quasi-Newtonian flows with defective boundary conditions, Appl. Math. and Compt., 222, 2013, pp. 244-254.

- J. Howell, H. Lee and S. Xu, Numerical study of a viscoelastic flow in a moving domain, Contemporary Mathematics, 586, 2013, pp. 181-188.

- T.F. Chen, H. Lee and C.C. Liu,
Numerical approximation of the Oldroyd-B model by the weighted least squares/discontinuous Galerkin method, Numerical Methods for PDEs, 29, 2013, pp. 531-548.

- K. Galvin, H. Lee and L.G. Rebholz, Approximation of viscoelastic flow with defective boundary condition, J. of Non-Newtoninan Fluid Mechanics, 169-170, 2012, pp. 104-113.

- H. Lee, Numerical approximation of Quasi_Newtoninan flows by ALE-FEM, Numerical Methods for PDEs 28, 2012, pp. 1667-1695.

- K. Galvin, H. Lee and L.G. Rebholz, A Numerical Study for a Velocity-Vorticity-Helicity formulation of the 3D Time-Dependent NSE, International Journal of Numerical Analysis and Modeling, Series B, 2(4), 2011, pp.355-368.

- H. Lee, Optimal control for quasi-Newtonian flows with defective boundary
conditionsM, Comput. Methods. Appl. Mech. Engrg., 200, 2011, pp. 2498-2506.

- H. Lee, M.A. Olshanskii, and L.G. Rebholz, On Error Analysis for the
3D Navier Stokes Equations in Velocity-Vorticity-Helicity Form,
SIAM J. Numer. Anal., 49, 2011, pp. 711-732.

- C. Cox, H. Lee and D. Szurley, Optimal control of
non-isothermal viscous fluid flow, Mathematical and
Computer Modelling, 50, 2009, pp. 1142-1153.

- J. Borggaard, T. Iliescu, H. Lee, J.P. Roop and H. Son,
A two-level Smagorinsky model, SIAM multiscale
modeling and simulation 7, 2008, pp. 599-621.

- E. Jenkins and H. Lee,
A domain decomposition method for the Oseen-viscoelastic flow equations, Appl. Math.
and Compt. 195, 2008, pp. 127-141.

- V. Ervin, J. Howell and H. Lee,
A two-parameter defect-correction method for computation of steady-state viscoelastic Fluid
Flow, Appl. Math. and Compt. 196, 2008, pp. 818-834.

- H.C. Lee and H. Lee,
Analysis and finite element approximation of an Optimal Control Problem for the Oseen Viscoelastic Fluid Flow,
J. Math. Anal. Appl. 336, 2007, pp. 1090-1106.

- V. Ervin and H. Lee,
Numerical approximation of a quasi-Newtonian Stokes flow problem with defective boundary conditions, SIAM J. Num. Anal. 45, 2007, pp. 2120-2140.

- C. Cox, H. Lee and D. Szurley,
Finite element approximation of the non-isothermal Stokes-Oldroyd equations, Int. J. Numer. Anal. Mod. 4, 2007, pp.425-440.