Department of Mathematical Sciences

Clemson University

Clemson, SC 29634-0921

Office: Martin O-206

Phone: (864) 656-5235

Fax: (864) 656-5230

E-mail:

- Ph.D., Virginia Polytechnic Institute and State University, 1997

- M.S., Virginia Polytechnic Institute and State University

- B.S., Yonsei University, South Korea

- Numerical Methods for PDEs
- Parallel Algorithms and Implementations
- Computational Optimal Control

- A. Cesmelioglu, H. Lee, A. Quaini, K. Wanf and S.Y. Yi, Optimization-based decoupling algorithms for a fluid-poroelastic system, in review.

- V.J. Ervin, H. Lee and J. Ruiz-Raminez, Nonlinear Darcy fluid flow with deposition, in review.

- H. Lee and S. Xu, Fully discrete error estimation for a Quasi-Newtonian fluid-structure interaction problem, in review.

- P. Kuberry and H. Lee, Convergence of a fluid-structure interaction problem decoupled by a Neumann control over a single time-step, in review.

- H. Lee and S. Xu, Finite Element Error Estimation for Quasi-Newtonian Fluid-Structure Interaction Problems, in review.

- T.F. Chen, H. Lee and C.C. Liu, A study on the Galerkinb least-squares method for the Oldroyd-B model, in review.

- V.J. Ervin, H. Lee and A.J. Salgado, Generalized Newtonian fluid flow through a porous medium, in review.

- J.T. Leverenz, M.M. Wiecek, H. Lee, Subgradient optimization for convex multiparametric programming, in review.

- P. Kuberry and H. Lee, Analysis of a fluid-structure interaction problem recast in an optimal control setting, SIAM J. Num. Anal., 53, 2015, pp. 1464-1487.

- H. Lee and S. Xu, Numerical approximation of viscoelastic flows in an elastic medium, International Journal of Numerical Analysis & Modeling, 12, 2015, pp. 125-143.

- K. Rife and H. Lee, Least squares approach for the time-dependent nonlinear Stokes-Darcy system, Computers and Mathematics with Applications, 67, 2014, pp. 1806-1815.

- V.J. Ervin, E.W. Jenkins and H. Lee, Approximation of the Stokes-Darcy system by optimization, J. Sci. Comput., 59, 2014, pp.775-794.

- J. Howell, H. Lee and S. Xu, Finite element approximation of viscoelastic flow in a moving domain, Electronic Transactions on Numerical Analysis, 41,2014, pp. 306-327.

- P. Kuberry and H. Lee, A decoupling algorithm for fluid-structure interaction problems based on optimization, Comput. Methods. Appl. Mech. Engrg., 267, 2013, pp. 594-605.

- K. Galvin and H. Lee, Analysis and approximation of the Cross model for quasi-Newtonian flows with defective boundary conditions, Appl. Math. and Compt., 222, 2013, pp. 244-254.

- J. Howell, H. Lee and S. Xu, Numerical study of a viscoelastic flow in a moving domain, Contemporary Mathematics, 586, 2013, pp. 181-188.

- T.F. Chen, H. Lee and C.C. Liu,
Numerical approximation of the Oldroyd-B model by the weighted least squares/discontinuous Galerkin method, Numerical Methods for PDEs, 29, 2013, pp. 531-548.

- K. Galvin, H. Lee and L.G. Rebholz, Approximation of viscoelastic flow with defective boundary condition, J. of Non-Newtoninan Fluid Mechanics, 169-170, 2012, pp. 104-113.

- H. Lee, Numerical approximation of Quasi_Newtoninan flows by ALE-FEM, Numerical Methods for PDEs 28, 2012, pp. 1667-1695.

- K. Galvin, H. Lee and L.G. Rebholz, A Numerical Study for a Velocity-Vorticity-Helicity formulation of the 3D Time-Dependent NSE, International Journal of Numerical Analysis and Modeling, Series B, 2(4), 2011, pp.355-368.

- H. Lee, Optimal control for quasi-Newtonian flows with defective boundary
conditionsM, Comput. Methods. Appl. Mech. Engrg., 200, 2011, pp. 2498-2506.

- H. Lee, M.A. Olshanskii, and L.G. Rebholz, On Error Analysis for the
3D Navier Stokes Equations in Velocity-Vorticity-Helicity Form,
SIAM J. Numer. Anal., 49, 2011, pp. 711-732.

- C. Cox, H. Lee and D. Szurley, Optimal control of
non-isothermal viscous fluid flow, Mathematical and
Computer Modelling, 50, 2009, pp. 1142-1153.

- J. Borggaard, T. Iliescu, H. Lee, J.P. Roop and H. Son,
A two-level Smagorinsky model, SIAM multiscale
modeling and simulation 7, 2008, pp. 599-621.

- E. Jenkins and H. Lee,
A domain decomposition method for the Oseen-viscoelastic flow equations, Appl. Math.
and Compt. 195, 2008, pp. 127-141.

- V. Ervin, J. Howell and H. Lee,
A two-parameter defect-correction method for computation of steady-state viscoelastic Fluid
Flow, Appl. Math. and Compt. 196, 2008, pp. 818-834.

- H.C. Lee and H. Lee,
Analysis and finite element approximation of an Optimal Control Problem for the Oseen Viscoelastic Fluid Flow,
J. Math. Anal. Appl. 336, 2007, pp. 1090-1106.

- V. Ervin and H. Lee,
Numerical approximation of a quasi-Newtonian Stokes flow problem with defective boundary conditions, SIAM J. Num. Anal. 45, 2007, pp. 2120-2140.

- C. Cox, H. Lee and D. Szurley,
Finite element approximation of the non-isothermal Stokes-Oldroyd equations, Int. J. Numer. Anal. Mod. 4, 2007, pp.425-440.